Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra 1 1748-9326/11/045509+15$33.00 c 2011 IOP Publishing Ltd Printed in the UK Environ. Res. Lett. 6 (2011) 045509 I H Myers-Smith et al ecosystems.Here, we (1) synthesize these findings, (2) present a conceptual framework that identifies mechanisms and constraints on shrub increase, (3) explore causes, feedbacks and implications of the increased shrub cover in tundra ecosystems, and (4) address potential lines of investigation for future research. Satellite observations from around the circumpolar Arctic, showing increased productivity, measured as changes in 'greenness', have coincided with a general rise in high-latitude air temperatures and have been partly attributed to increases in shrub cover. Studies indicate that warming temperatures, changes in snow cover, altered disturbance regimes as a result of permafrost thaw, tundra fires, and anthropogenic activities or changes in herbivory intensity are all contributing to observed changes in shrub abundance. A large-scale increase in shrub cover will change the structure of tundra ecosystems and alter energy fluxes, regional climate, soil-atmosphere exchange of water, carbon and nutrients, and ecological interactions between species. In order to project future rates of shrub expansion and understand the feedbacks to ecosystem and climate processes, future research should investigate the species or trait-specific responses of shrubs to climate change including: (1) the temperature sensitivity of shrub growth, (2) factors controlling the recruitment of new individuals, and (3) the relative influence of the positive and negative feedbacks involved in shrub expansion.
Recent densification of shrub cover is now documented in many Arctic regions. However, most studies focus on global scale responses, yielding very little information on the local patterns. This research aims to quantify shrub cover increase at northern treeline (Québec, Canada) in two important types of environment, sandy terraces and hilltops (which cover about 70% of the landscape), and to identify the species involved. The comparison of a mosaic of two aerial photographs from 1957 (137 km 2 ) and one satellite image taken in 2008 (151 km 2 ) revealed that both hilltops and terraces recorded an increase in shrub cover. However, the increase was significantly greater on terraces than on hilltops (21.6% versus 11.6%). According to ground truthing, the shrub cover densification is associated mainly with an increase of Betula glandulosa Michx. The numerous seedlings observed during the ground truthing suggest that shrub densification should continue in the future.
Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air‐photo studies have documented recent changes in high‐latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24‐year (1986–2010) Landsat time series in a latitudinal transect across the boreal forest‐tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last 40 years. Using a per‐pixel (30 m) trend analysis, 30% of the observable (cloud‐free) land area experienced a significant (P < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak‐summer conditions. The average NDVI trend (0.007 yr−1) corresponds to a leaf‐area index (LAI) increase of ~0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer. Across the entire transect, the area‐averaged LAI increase was ~0.2 during 1986–2010. A higher area‐averaged LAI change (~0.3) within the shrub‐tundra portion of the transect represents a 20–60% relative increase in LAI during the last two decades. Our Landsat‐based analysis subdivides the overall high‐latitude greening trend into changes in peak‐summer greenness by cover type. Different responses within and among shrub, graminoid, and tree‐dominated cover types in this study indicate important fine‐scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low‐biomass vegetation types over multi‐decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.