This work aims at helping multimedia content understanding by deriving benefit from textual clues embedded in digital videos. For this, we developed a complete video Optical Character Recognition system (OCR), specifically adapted to detect and recognize embedded texts in videos. Based on a neural approach, this new method outperforms related work, especially in terms of robustness to style and size variabilities, to background complexity and to low resolution of the image. A language model that drives several steps of the video OCR is also introduced in order to remove ambiguities due to a local letter by letter recognition and to reduce segmentation errors. This approach has been evaluated on a database of French TV news videos and achieves an outstanding character recognition rate of 95%, corresponding to 78% of words correctly recognized, which enables its incorporation into an automatic video indexing and retrieval system.
Searching for relevant webpages and following hyperlinks to related content is a widely accepted and effective approach to information seeking on the textual web. Existing work on multimedia information retrieval has focused on search for individual relevant items or on content linking without specific attention to search results. We describe our research exploring integrated multimodal search and hyperlinking for multimedia data. Our investigation is based on the MediaEval 2012 Search and Hyperlinking task. This includes a known-item search task using the Blip10000 internet video collection, where automatically created hyperlinks link each relevant item to related items within the collection. The search test queries and link assessment for this task was generated using the Amazon Mechanical Turk crowdsourcing platform. Our investigation examines a range of alternative methods which seek to address the challenges of search and hyperlinking using multimodal approaches. The results of our experiments are used to propose a research agenda for developing effective techniques for search and hyperlinking of multimedia content.
This paper focuses on a solution to better adapt ASR systems, whose language models (LM) are usually trained on topic-independent corpora, to new topics, in particular in the case of broadcast news. We propose a new complete and fully unsupervised technique that selects keywords from each segment using information retrieval methods, to build a thematically coherent adaptation corpus from the Internet. The LM used for the initial transcription is then adapted before rescoring word lattices. Experimental results demonstrate the validity of the proposed adaptation technique with a significant reduction of the perplexity after LM adaptation. Word error rates are also improved in some cases though to a lesser extent.
Entity linking is a core task in textual document processing, which consists in identifying the entities of a knowledge base (KB) that are mentioned in a text. Approaches in the literature consider either independent linking of individual mentions or collective linking of all mentions. Regardless of this distinction, most approaches rely on the Wikipedia encyclopedic KB in order to improve the linking quality, by exploiting its entity descriptions (web pages) or its entity interconnections (hyperlink graph of web pages). In this paper, we devise a novel collective linking technique which departs from most approaches in the literature by relying on a structured RDF KB. This allows exploiting the semantics of the interrelationships that candidate entities may have at disambiguation time rather than relying on raw structural approximation based on Wikipedia's hyperlink graph. The few approaches that also use an RDF KB simply rely on the existence of a relation between the candidate entities to which mentions may be linked. Instead, we weight such relations based on the RDF KB structure and propose an efficient decoding strategy for collective linking. Experiments on standard benchmarks show significant improvement over the state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.