Species endemic to restricted geographical ranges represent a particular conservation issue, be it for their heritage interest. In a context of global change, this is particularly the case for plants which belong to high‐mountain ecosystems and, because of their ecological requirements, are doomed to survive or disappear on their “sky islands”. The Pyrenean Larkspur (Delphinium montanum, Ranunculaceae) is endemic to the Eastern part of the Pyrenees (France and Spain). It is now only observable at a dozen of localities and some populations show signs of decline, such as a recurrent lack of flowering. Implementing population genomics approach (e.g., RAD‐seq like) is particularly useful to understand genomic patterns of diversity and differentiation in order to provide recommendations in term of conservation. However, it remains challenging for species such as D. montanum that are autotetraploid with a large genome size (1C‐value >10 pg) as most methods currently available were developed for diploid species. A Bayesian framework able to call genotypes with uncertainty allowed us to assess genetic diversity and population structure in this system. Our results show evidence for inbreeding (mean GIS = 0.361) within all the populations and substantial population structure (mean GST = 0.403) at the metapopulation level. In addition to a lack of connectivity between populations, spatial projections of Ecological Niche Modeling (ENM) analyses under different climatic scenarios predict a dramatic decrease of suitable habitat for D. montanum in the future. Based on these results, we discuss the relevance and feasibility of different conservation measures.
Species endemic to restricted geographical ranges represent a particular conservation issue, be it for their heritage interest. In a context of global change, this is particularly the case for plants which belong to high-mountain ecosystems and, because of their ecological requirements, are doomed to survive or disappear on their "sky islands". The Pyrenean Larkspur (Delphinium montanum, Ranunculaceae) is endemic to the Eastern part of the Pyrenees (France and Spain). It is now only observable at a dozen of localities and some populations show signs of decline, such as a recurrent lack of flowering. Implementing population genomic approach (e.g. RAD-seq like) is particularly useful to understand genomic patterns of diversity and differentiation in order to provide recommendations in term of conservation. However, it remains challenging for species such as D. montanum that are autotetraploid with a large genome size (1C-value > 10 pg) as most methods currently available were developed for diploid species. A Bayesian framework able to call genotypes with uncertainty allowed us to assess genetic diversity and population structure in this system. Our results show evidence for inbreeding (mean GIS = 0.361) within all the populations and substantial population structure (mean GST = 0.403) at the metapopulation level. In addition to a lack of connectivity between populations, spatial projections of Ecological Niche Modelling analyses under different climatic scenarios predict a dramatic decrease of suitable habitat for D. montanum in the future. Based on these results, we discuss the relevance and feasibility of different conservation measures.
Delphinium montanum DC. 1815, is an endangered larkspur endemic to the Eastern Pyrenees. For biogeographic and conservation purpose, a hybrid assembly approach based on long- and short-read genomic data allowed us to successfully assemble whole plastid genome of Delphinium montanum . The complete plastome is 154,185 bp in length, consisting of a pair of inverted repeats (IRs) of 26,559 bp, a large single-copy (LSC) region and a small single-copy region (SSC) of 84,746 and 16,320 bp, respectively. It was found to contain 136 genes, including 84 protein-coding genes, 44 trRNA genes and 8 rRNA genes. The overall GC content of the plastid genome is 38.3%. Phylogenetic inference supports the polyphyly of the Delphinium genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.