Citation: Skrekas, P., Sextos, A. and Giaralis, A. (2014). Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings. Earthquakes and Structures, 6(1), pp. 71-87. doi: 10.12989/eas.2014.6.1.071 This is the unspecified version of the paper.This version of the publication may differ from the final published version. Abstract. Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. This influence is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsioninduced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system. Permanent
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.