Starting from the notion of semistar operation, introduced in 1994 by Okabe and Matsuda [49], which generalizes the classical concept of star operation (cf. Gilmer's book [27]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer, P. Lorenzen and P. Jaffard (cf. Halter-Koch's book [32]), in this paper we outline a general approach to the theory of Prüfer ⋆-multiplication domains (or P⋆MDs), where ⋆ is a semistar operation. This approach leads to relax the classical restriction on the base domain, which is not necessarily integrally closed in the semistar case, and to determine a semistar invariant character for this important class of multiplicative domains (cf. also J.M. García, P. Jara and E. Santos [25]). We give a characterization theorem of these domains in terms of Kronecker function rings and Nagata rings associated naturally to the given semistar operation, generalizing previous results by J. Arnold and J. Brewer [10] and B.G. Kang [39]. We prove a characterization of a P⋆MD, when ⋆ is a semistar operation, in terms of polynomials (by using the classical characterization of Prüfer domains, in terms of polynomials given by . We also deal with the preservation of the P⋆MD property by "ascent" and "descent" in case of field extensions. In this context, we generalize to the P⋆MD case some classical results concerning Prüfer domains and PvMDs. In particular, we reobtain as a particular case a result due to H. Prüfer [51] and W. Krull [41] (cf. also F. Lucius ). Finally, we develop several examples and applications when ⋆ is a (semi)star given explicitly (e.g. we consider the case of the "standard" v-, t-, b-, w-operations or the case of semistar operations associated to appropriate families of overrings).
Let $H$ be a Hopf algebra and let $\mathcal{M}_s (H)$ be the category of all left $H$-modules and right $H$-comodules satisfying appropriate compatibility relations. An object in $\mathcal{M}_s (H)$ will be called a stable anti-Yetter–Drinfeld module (over $H$) or a SAYD module, for short. To each $M \in \mathcal{M}_s (H)$ we associate, in a functorial way, a cyclic object $\mathrm{Z}_\ast (H, M)$. We show that our construction can be used to compute the cyclic homology of the underlying algebra structure of $H$ and the relative cyclic homology of $H$-Galois extensions.Let $K$ be a Hopf subalgebra of $H$. For an arbitrary $M \in \mathcal{M}_s (K)$ we define a right $H$-comodule structure on $\mathrm{Ind}_K^H M := H \otimes_K M$ so that $\mathrm{Ind}_K^H M$ becomes an object in $\mathcal{M}_s (H)$. Under some assumptions on $K$ and $M$ we compute the cyclic homology of $\mathrm{Z}_\ast (H, \mathrm{Ind}_K^H M)$. As a direct application of this result, we describe the relative cyclic homology of strongly graded algebras. In particular, we calculate the cyclic homology of group algebras and quantum tori.Finally, when $H$ is the enveloping algebra of a Lie algebra $\mathfrak{g}$, we construct a spectral sequence that converges to the cyclic homology of $H$ with coefficients in a given SAYD module $M$. We also show that the cyclic homology of almost symmetric algebras is isomorphic to the cyclic homology of $H$ with coefficients in a certain SAYD module.
We apply the theory of localization for tame and wild coalgebras in order to prove the following theorem: "Let Q be an acyclic quiver. Then any tame admissible subcoalgebra of K Q is the path coalgebra of a quiver with relations".
Abstract. The notion of the path coalgebra of a quiver with relations introduced in [11] and [12] is studied. In particular, developing this topic in the context of the weak * topology, we give a criterion that allows us to verify whether or not a relation subcoalgebra of a path coalgebra is the path coalgebra of a quiver with relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.