Bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is the main determinant of the clinical evaluation of hip fracture risk. However, it has been shown that BMD is not the only predictive factor for hip fracture, but that bone geometry is also important. We studied whether the combination of bone geometry and BMD could further improve the determination of hip fracture risk and fracture type. Seventy-four postmenopausal females (mean age 74 years) with a non-pathologic cervical or trochanteric hip fracture without previous hip fracture or hip surgery constituted the study group. Forty-nine had a cervical fracture (mean age 73 years) and 25 had a trochanteric fracture (mean age 76 years). The control group consisted of 40 age-matched females (mean age 74 years). The geometrical parameters were defined from plain anteroposterior radiographs, and the potential sources of inaccuracy were eliminated as far as possible by using a standardized patient position and calibrated dimension measurements with digital image analysis. BMD was measured at the femoral neck (FEBMD), Ward's triangle (WABMD), and the trochanter (TRBMD). Stepwise linear regression analysis showed that the best predictor of hip fracture was the combination of medial calcar femoral cortex width (CFC), TRBMD, neck/shaft angle (NSA), and WABMD ( r=0.72, r(2)=0.52, P<0.001). The area under the receiver operating characteristic curve (ROC) for this model was 0.93, while the area under ROC for TRBMD alone was 0.81. At a specificity of 80%, sensitivity improved from 52.5% to 92.5% with this combination compared with TRBMD alone. The combined predictors of cervical and trochanteric fracture differed, being NSA, CFC, TRBMD, and WABMD for cervical and TRBMD and femoral shaft cortical thickness for trochanteric fracture. In addition, we found a statistically significant correlation between FEBMD and femoral shaft and femoral neck cortex width ( r=0.40, P<0.01 and r=0.30, P<0.01, respectively). The results confirm that the combination of BMD and radiological measures of upper femur geometry improve the assessment of the risk of hip fracture and fracture type compared to BMD alone, and that bone geometry plays an important role in the evaluation of bone strength.
We experimentally studied the distribution of hip fracture types at different structural mechanical strength. Femoral neck fractures were dominant at the lowest structural strength levels, whereas trochanteric fractures were more common at high failure loads. The best predictor of fracture type across all failure loads and in both sexes was the neck-shaft angle.Introduction: Bone geometry has been shown to be a potential risk factor for osteoporotic fractures. Risk factors have been shown to differ between cervical and trochanteric hip fractures. However, the determinants of cervical and trochanteric fractures at different levels of structural mechanical strength are currently unknown. In addition, it is not known if the distribution of fracture types differs between sexes. The aim of this experimental study on excised femora was to investigate whether there exist differences in the distribution of cervical and trochanteric fractures between different structural mechanical strength levels and different sexes and to identify the geometric determinants that predict a fracture type. Materials and Methods:The sample was comprised of 140 cadavers (77 females: mean age, 81.7 years; 63 males: mean age, 79.1 years) from whom the left femora were excised for analysis. The bones were radiographed, and geometrical parameters were determined from the digitized X-rays. The femora were mechanically tested in a side impact configuration, simulating a sideways fall. After the mechanical test, the fracture patterns were classified into cervical and trochanteric. Results: The overall proportion of cervical fractures was higher in females (74%) than in males (49%) (p ס 0.002). The fracture type distribution differed significantly across load quartiles in females (p ס 0.025), but not in males (p ס 0.205). At the lowest load quartiles, 94.7% of fractures in female and 62.5% in males were femoral neck fractures. At the highest quartiles, in contrast, only 52.6% of fractures in females and 33.3% in males were cervical fractures. Among geometric variables, the neck-shaft angle was the best predictor of fracture type, with higher values in subjects with cervical fractures. This finding was made in females (p < 0.001) and males (p ס 0.02) and was consistent across all failure load quartiles. Conclusions: Femoral neck fractures predominate at the lowest structural mechanical strength levels, whereas trochanteric fractures are more common at high failure loads. Females are more susceptible to femoral neck fractures than males. The best predictor of fracture type across all structural strength levels and both sexes was the neck-shaft angle.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a notorious model compound of highly toxic environmental pollutants, polychlorinated dibenzo-p-dioxins (PCDDs). Their toxic effects are mediated via cytosolic aryl hydrocarbon receptor (AHR). We studied the effects of several dose levels of TCDD on developing rat bone after maternal exposure at different times of gestation and lactation in three differentially sensitive rat lines. Rat lines A, B, and C differ in their sensitivity to TCDD due to mutated AHR (Ahr(hw)) in line A and another TCDD-resistance allele (B(hw)) in line B. Line C rats have no resistance alleles. Offspring were analyzed for bone mineral density and geometry by peripheral quantitative computed tomography (pQCT) and for bone biomechanics by three-point bending at mid-diaphysis of tibia and femur and by axial loading at femoral neck. TCDD treatment resulted in bone defects, mainly in offspring of the most sensitive line C at a maternal dose of 1 microg/kg. They included decreased bone length, cross-sectional area of cortex, and bone mineral density. Mechanical testing revealed significantly reduced bending breaking force and stiffness of tibia, femur, and femoral neck. The effects were exposure time-dependent, and earlier exposure caused more severe defects. Gestational exposure alone was not sufficient, but lactational exposure was required to cause the bone defects. Most of the defects were recovered at the age of 1 year. The results indicate that dioxins affect developing bone by interfering with bone growth and mechanical strength and that the effects are mainly reversible. The dioxin-resistance alleles, Ahr(hw) and B(hw) increase the resistance to these defects.
We evaluated the contribution of lifestyle-related factors, calcaneal ultrasound, and radial bone mineral density (BMD) to cervical and trochanteric hip fractures in elderly women in a 10-year population-based cohort study. The study population consisted of 1,681 women (age range 70-73 years). Seventy-two percent (n = 1,222) of them participated in the baseline measurements. Calcaneal ultrasound was assessed with a quantitative ultrasound device. BMD measurements were performed at the distal and ultradistal radius by dual-energy X-ray absorptiometry. Forward stepwise logistic regression analysis was used to find the most predictive variables for hip fracture risk. During the follow-up, 53 of the women had hip fractures, including 32 cervical and 21 trochanteric ones. The fractured women were taller and thinner and had lower calcaneal ultrasound values than those without fractures. High body mass index (BMI) was a protective factor against any hip fractures, while low functional mobility was a risk factor of hip fractures. Specifically, high BMI protected against cervical hip fractures, while low physical activity was a significant predictor of these fractures. Similarly, high BMI protected against trochanteric fractures, whereas low functional mobility and high coffee consumption were significant predictors of trochanteric fractures. Cervical and trochanteric hip fractures seem to have different risk factors. Therefore, fracture type should be taken into account in clinical fracture risk assessment and preventative efforts, including patient counseling. However, the study is not conclusive due to the limited number of observed fractures during follow-up, and the results have to be confirmed in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.