The Escherichia coli oligoribonuclease, ORN, has a 3′ to 5′ exonuclease activity specific for small oligomers that is essential for cell viability. The human homologue, REXO2, has hitherto been incompletely characterized, with only its in vitro ability to degrade small single-stranded RNA and DNA fragments documented. Here we show that the human enzyme has clear dual cellular localization being present both in cytosolic and mitochondrial fractions. Interestingly, the mitochondrial form localizes to both the intermembrane space and the matrix. Depletion of REXO2 by RNA interference causes a strong morphological phenotype in human cells, which show a disorganized network of punctate and granular mitochondria. Lack of REXO2 protein also causes a substantial decrease of mitochondrial nucleic acid content and impaired de novo mitochondrial protein synthesis. Our data constitute the first in vivo evidence for an oligoribonuclease activity in human mitochondria.
We investigated whether polyphenols modulate the expression and activity of the enzymes gelatinases A (MMP-2) and B (MMP-9), involved in the pathogenesis of multiple sclerosis (MS). LPS-activated primary rat astrocytes were treated with the flavonoids quercetin (QRC) and cathechins [green tea extract (GTE)] and the non-flavonoids resveratrol (RSV) and tyrosol/hydroxytyrosol (Oliplus). As assessed by zymography and RT-PCR, RSV and Oliplus, but not QRC and GTE, dose-dependently inhibited the LPS-induced levels and mRNA expression of MMP-2 and MMP-9. By contrast, in cell-free systems direct inhibition of gelatinase activity in MS sera was determined by QRC and GTE, but not by RSV. Oliplus was only partially effective. Our results indicate that the flavonoids and non-flavonoids tested exert their inhibitory effect on MMPs, displaying different mechanisms of action, possibly related to their structure. Therefore, their combined use may represent a powerful tool for the down-regulation of MMPs in the course of MS.
BackgroundMatrix metalloproteinases (MMPs) released by glial cells are important mediators of neuroinflammation and neurologic damage in HIV infection. The use of antiretroviral drugs able to combat the detrimental effect of chronic inflammation and target the exaggerated MMP activity might represent an attractive therapeutic challenge. Recent studies suggest that CCR5 antagonist maraviroc (MVC) exerts immunomodulant and anti-inflammatory activity beyond its anti-HIV properties. We investigated the in vitro effect of MVC on the activity of MMPs in astrocyte and microglia cultures.Methodology/Principal FindingsPrimary cultures of rat astrocytes and microglia were activated by exposure to phorbol myristate acetate (PMA) or lypopolysaccharide (LPS) and treated in vitro with MVC. Culture supernatants were subjected to gelatin zymography and quantitative determination of MMP-9 and MMP-2 was done by computerized scanning densitometry. MMP-9 levels were significantly elevated in culture supernatants from both LPS- and PMA-activated astrocytes and microglia in comparison to controls. The treatment with MVC significantly inhibited in a dose-dependent manner the levels and expression of MMP-9 in PMA-activated astrocytes (p<0,05) and, to a lesser extent, in PMA-activated microglia. By contrast, levels of MMP-2 did not significantly change, although a tendency to decrease was seen in PMA-activated astrocytes after treatment with MVC. The inhibition of levels and expression of MMP-9 in PMA-activated glial cells did not depend on cytotoxic effects of MVC. No inhibition of MMP-9 and MMP-2 were found in both LPS-activated astrocytes and microglia.ConclusionsThe present in vitro study suggests that CCR5 antagonist compounds, through their ability to inhibit MMP-9 expression and levels, might have a great potential for the treatment of HIV-associated neurologic damage.
BackgroundProteolytic enzymes have been implicated in the pathogenesis of Multiple Sclerosis (MS) for both their ability to degrade myelin proteins and for their presence in MS plaques.In this study we investigated whether interferon-beta (IFN-β) could differently modulate the activity and the expression of proteolytic activities against myelin basic protein (MBP) present in lipopolysaccharide (LPS)-activated astrocytes.Methodology/Principal FindingsRat astrocyte cultures were activated with LPS and simultaneously treated with different doses of IFN-β. To assess the presence of MBP-cleaving proteolytic activity, culture supernatants and cellular extracts collected from astrocytes were incubated with exogenous MBP. A MBP-degrading activity was found in both lysates and supernatants from LPS-activated astrocytes and was dose-dependently inhibited by IFN-β. The use of protease inhibitors as well as the zymographic analysis indicated the presence of calpain II (CANP-2) in cell lysates and gelatinases A (MMP-2) and B (MMP-9) in cell supernatants. RT-PCR revealed that the expression of CANP-2 as well as of MMP-2 and MMP-9 was increased in LPS-activated astrocytes and was dose-dependently inhibited by IFN-β treatment. The expression of calpastatin, the natural inhibitor of CANPs, was not affected by IFN-β treatment. By contrast, decreased expression of TIMP-1 and TIMP-2, the natural inhibitors of MMP-9 and MMP-2, respectively, was observed in IFN-β-treated astrocytes compared to LPS-treated cells. The ratio enzyme/inhibitor indicated that the effect of IFN-β treatment is more relevant to CANP-2 than on MMPs.Conclusions/ SignificanceThese results suggest that the neuroinflammatory damage during MS involves altered balance between multiple proteases and their inhibitors and indicate that IFN-β is effective in regulating different enzymatic systems involved in MS pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.