The understanding of the phenomena at the base of tooth movement, due to orthodontic therapy, is an ambitious topic especially with regard to the "optimal forces" able to move teeth without causing irreversible tissue damages. To this aim, a measuring platform for detecting 3D orthodontic actions has been developed. It consists of customized load cells and dedicated acquisition electronics. The force sensors are able to detect, simultaneously and independently of each other, the six orthodontic components which a tooth is affected by. They have been calibrated and then applied on a clinical case that required NiTi closed coil springs and miniscrews for the treatment of upper post-extraction spaces closure. The tests have been conducted on teeth stumps belonging to a plaster cast of the patient's mouth. The load cells characteristics (sensor linearity and repeatability) have been analyzed (0.97 < R < 1; 6.3*10 %< STD < 8.8 %) and, on the basis of calibration data, the actions exerted on teeth have been determined. The biomechanical behavior of the frontal group and clinical interpretation of the results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.