Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall-degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.Plant-parasitic nematodes are responsible for global agricultural losses amounting to an estimated $157 billion annually. Although chemical nematicides are the most reliable means of controlling root-knot nematodes, they are increasingly being withdrawn owing to their toxicity to humans and the environment. Novel and specific targets are thus needed to develop new strategies against these pests.The Southern root-knot nematode Meloidogyne incognita is able to infect the roots of almost all cultivated plants, making it perhaps the
Although the presence of chitin in nematodes is well documented little is known about its synthesis in this phyletic group. The recently completed genome sequence of Caenorhabditis elegans predicts two sequences with homology to chitin synthases (chitin-UDP acetyl-glucosaminyl transferase; EC 2.4.1.16). We show that these genes are differentially expressed in a pattern that may reflect different functional roles. One gene is expressed predominantly in the adult hermaphrodite (the main egg-producing stage in the nematode) and later larval stages, which is consistent with a role in production of chitin for the eggshell. The other gene, however, is expressed in the cells that form the pharynx, and only in the period directly preceding a moult. These data suggest that the product of this gene is involved in synthesis of the feeding apparatus, which is replaced during each moult. We have also isolated a full-length genomic sequence of a chitin synthase orthologue from the plant parasitic nematode Meloidogyne artiellia. The single gene present in M. artiellia shows an expression pattern that is consistent with a role for the protein in production of the eggshell.
The genome of pea (Pisum sativum) contains genes encoding a family of distinct lipoxygenases (LOX). Among these, LOXN2 showed eight exons encoding a 93.7-kD enzyme, harboring two C-terminal deletions and an unusual arginine/threoninetyrosine motif in the domain considered to control the substrate specificity. LOXN2, when overexpressed in yeast, exhibited normal enzyme activity with an optimum at pH 4.5, and a dual positional specificity by releasing a 3:1 ratio of C-9 and C-13 oxidized products. The predicted LOXN2 structure lacked a loop present in soybean (Glycine max) LOX1, in a position consistent with control of the degree of substrate access to the catalytic site and for LOXN2's dual positional specificity. The LOXN2 gene was tightly conserved in the Progress 9 and MG103738 genotypes, respectively, susceptible and resistant to the root cyst nematode Heterodera goettingiana. LOXN2 transcription was monitored in roots after mechanical injury and during nematode infection. The message peaked at 3 and 24 h after wounding in both genotypes and was more abundant in the resistant than in the susceptible pea. In nematode-infected roots, transcription of several LOX genes was triggered except LOXN2, which was repressed in both genotypes. In situ hybridization revealed that LOXN2 message was widespread in the cortex and endodermis of healthy roots, but specifically localized at high level in the cells bordering the nematode-induced syncytia of infected roots. However, LOXN2 transcript signal was particularly intense in collapsing syncytia of MG103738 roots, suggesting LOXN2 involvement in late mechanisms of host resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.