The planar cell polarity (PCP) pathway is a highly conserved signaling cascade that coordinates both epithelial and axonal morphogenic movements during development. Angiogenesis also involves the growth and migration of polarized cells, although the mechanisms underlying their intercellular communication are poorly understood. Here, using cell culture assays, we demonstrate that inhibition of PCP signaling disrupts endothelial cell growth, polarity, and migration, all of which can be rescued through downstream activation of this pathway by expression of either Daam-1, Diversin or Inversin. Silencing of either Dvl2 or Prickle suppressed endothelial cell proliferation. Moreover, loss of p53 rescues endothelial cell growth arrest but not the migration inhibition caused by PCP disruption. In addition, we show that the zebrafish Wnt5 mutant (pipetail (ppt)), which has impaired PCP signaling, displays vascular developmental defects. These findings reveal a potential role for PCP signaling in the coordinated assembly of endothelial cells into vascular structures and have important implications for vascular remodeling in development and disease.
Previous mode of action studies identified methionine aminopeptidase 2 (MetAP-2) as the target of the antiangiogenic natural product fumagillin and its drug candidate analog, TNP-470. We report here that TNP-470-mediated MetAP-2 inhibition blocks noncanonical Wnt signaling, which plays a critical role in development, cell differentiation, and tumorigenesis. Consistent with this finding, antisense MetAP-2 morpholino oligonucleotide injection in zebrafish embryos phenocopies gastrulation defects seen in noncanonical Wnt5 loss-of-function zebrafish mutants. MetAP-2 inhibition or depletion blocks signaling downstream of the Wnt receptor Frizzled, but upstream of Calmodulin-dependent Kinase II, RhoA, and c-Jun N-terminal Kinase. Moreover, we demonstrate that TNP-470 does not block the canonical Wnt/beta-catenin pathway. Thus, TNP-470 selectively regulates noncanonical over canonical Wnt signaling and provides a unique means to explore and dissect the biological systems mediated by these pathways.
The Wnt/planar cell polarity (PCP) pathway regulates directed cell movement during development and was recently found to play a critical role in endothelial cell proliferation and angiogenesis [Zhang Y, et al. (2006) Chem Biol 13:1001-1009 Masckauchan TN, et al. (2006) Mol Biol Cell 17:5163-5172]. However, the mechanisms by which PCP signaling components regulate angiogenesis remain unknown. We report that expression of a constitutively active Cterminal domain of Dishevelled-associated activator of morphogenesis 1 (DAAM1) selectively inhibited endothelial cell proliferation. Moreover, this activated construct suppressed endothelial cell migration and the ability to form coordinated networks in vivo and in vitro. Although constitutively active DAAM1 (CDAAM1) induced both actin polymerization and microtubule (MT) stabilization, the stabilization of MTs alone was sufficient to inhibit endothelial cell growth selectively. Inhibition of actin polymerization alone by jasplakinolide treatment failed to reproduce the inhibitory effects of CDAAM1. These results indicate that DAAM1 regulates endothelial cell growth through MT stabilization in a cell type-selective manner and suggest that PCP signaling plays a pivotal role in angiogenesis by regulating MT stabilization.Wnt signaling | microtubule stabilization | zebrafish | dishevelledassociated activator of morphogenesis 1 | HUVEC
Inhibition of angiogenesis has led to tumor suppression in several cancer models. Although administering purified recombinant antiangiogenic product is effective, alternative approaches through genetic manipulation may be more cost-effective. We propose to implant nonautologous recombinant cells secreting angiostatin for systemic delivery of angiostatin in cancer treatment. These cells are protected from graft rejection in alginate microcapsules to function as "micro-organs" to deliver angiostatin in vivo. This approach was tested by implanting encapsulated mouse myoblast C2C12 cells genetically modified to secrete angiostatin into mice bearing solid tumor. Angiostatin was detected in sera of the treated mice. Efficacy was demonstrated by suppression of palpable tumor growth and improved survival. At autopsy, angiostatin localized to residual tumors and high levels of angiostatic activity were detected in tumor extracts. Tumor tissues showed increased apoptosis and necrosis compared with those from untreated or mock-treated mice. Immunohistochemical staining against von Willebrand factor, an endothelial cell marker, showed that within tumors from the treated mice, the neovasculature was poorly defined by endothelial cells, many of which were undergoing apoptosis. However, the tumors eventually developed neovasculature independent of endothelial cells. Such vascular mimicry would account for the lack of long-term efficacy despite persistent angiostatin delivery. In conclusion, implantation with nonautologous microencapsulated cells is feasible for systemic delivery of angiostatin, resulting in localization of angiostatin to tumors and targeted apoptosis of the endothelial cells. Clinical efficacy was demonstrated by suppression of tumor growth and extension of life span. Although the potential of this cell-based approach for angiostatin-mediated cancer therapy is confirmed, long-term efficacy must take into account the possible escape by some tumors from angiogenesis inhibition.
A novel approach to cancer gene therapy is to implant microcapsules containing nonautologous cells engineered to secrete molecules with antineoplastic properties. The efficacy of this treatment is now tested in a mouse model bearing HER-2/neu-positive tumors. Nonautologous mouse myoblasts (C(2)C(12)) were genetically modified to secrete interleukin-2 linked to the Fv region of a humanized antibody with affinity to HER-2/neu. The resulting fusion protein, sFvIL-2, would encompass immune-stimulatory cytokine activity now targeted to the HER-2/neu-expressing tumor. These recombinant cells were then immunoprotected with alginate-poly-L-lysine-alginate microcapsules before implantation into tumor-bearing mice. Treatment with these encapsulated cells led to a delay in tumor progression and prolonged survival of the animals. The long-term efficacy was limited by an inflammatory reaction against the implanted microcapsules probably because of the secreted cytokine and antigenic response against the xenogeneic fusion protein itself. However, over the short term (initial 2 weeks), efficacy was confirmed when a significant amount of biologically active interleukin-2 was detected systemically, and targeting of the fusion protein to the HER-2/neu-expressing tumor was shown immunohistochemically. The tumor suppression in the treated animals was associated with increased apoptosis and necrosis in the tumor tissue, thus demonstrating successful targeting of the antiproliferative effect to the tumors by this delivery paradigm. In conclusion, this new approach to systemic cancer gene therapy needs to be modified to provide long-term delivery, but has demonstrated short-term efficacy and potential to become a cost-effective, benign, and non-viral-based adjunct to the current armory of anticancer strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.