the whole E13,5 brain and in the olfactory bulbs (OB) of E18,5 brain (Fig. 1b, Extended Data Fig. 1d, e). Also, neural stem cells (NSCs) isolated from Ambra1 cKO mice show increased levels of several cell-cycle regulatory proteins (Fig. 1c, Extended Data Fig. 1f, g), together with higher clonogenic potential and replication rate (Fig 1d, Extended Data Fig. 1h). Strikingly, levels of cyclin D1 and D2 proteins and phosphorylated pRb (S807/811) are highly increased both ex and in vivo (Fig. 1c, e, Extended Data Fig. 1g, i-m), suggesting an AMBRA1dependent Cyclin D modulation. Indeed, consistent with our previous results 7 , we find in neural ex vivo and in vitro cell lines that AMBRA1 directly binds and regulates the stability of N-Myc, via the phosphatase PP2A, thereby controlling Cyclin D1 and D2 transcription (Extended Data Fig. 1n-r). Moreover, we noticed that both cyclin D1 and D2 are highly resilient to proteasomal degradation in Ambra1-deficiency conditions (Fig. 1f, Extended Data Fig. 2a, b). In line with the fact that both Myc and D-type cyclins positively regulate G1/S transition 10,11 , Ambra1 cKO NSCs show a shorter G1 phase with faster entry into, and longer residence in S phase (Extended Data Fig. 2c). By reducing cyclin D/CDK kinase activity we could restore proliferation to wt levels (Extended Data Fig. 2d), highlighting the importance of accelerated G1/S transition in the AMBRA1depleted driven phenotype. Additionally, we found that due to Ambra1 deficiency, deregulated cell cycle progression is followed by increased cell death, a phenotype rescued upon cyclin D/CDK activity inhibition (Extended Data Fig. 2e, f). Of note, Ambra1 deficiency in neurodevelopment promotes staminal niche