Triple-negative breast cancer (TNBC) is characterized by poor response to therapy and low overall patient survival. Recently, Estrogen Receptor beta (ERβ) has been found to be expressed in a fraction of TNBCs where, because of its oncosuppressive actions on the genome, it represents a potential therapeutic target, provided a better understanding of its actions in these tumors becomes available. To this end, the cell lines Hs 578T, MDA-MB-468 and HCC1806, representing the claudin-low, basal-like 1 and 2 TNBC molecular subtypes respectively, were engineered to express ERβ under the control of a Tetracycline-inducible promoter and used to investigate the effects of this transcription factor on gene activity. The antiproliferative effects of ERβ in these cells were confirmed by multiple functional approaches, including transcriptome profiling and global mapping of receptor binding sites in the genome, that revealed direct negative regulation by ERβ of genes, encoding for key components of cellular pathways associated to TNBC aggressiveness representing novel therapeutic targets such as angiogenesis, invasion, metastasis and cholesterol biosynthesis. Supporting these results, interaction proteomics by immunoprecipitation coupled to nano LC-MS/MS mass spectrometry revealed ERβ association with several potential nuclear protein partners, including key components of regulatory complexes known to control chromatin remodeling, transcriptional and post-transcriptional gene regulation and RNA splicing. Among these, ERβ association with the Polycomb Repressor Complexes 1 and 2 (PRC1/2), known for their central role in gene regulation in cancer cells, was confirmed in all three TNBC subtypes investigated, suggesting its occurrence independently from the cellular context. These results demonstrate a significant impact of ERβ in TNBC genome activity mediated by its cooperation with regulatory multiprotein chromatin remodeling complexes, providing novel ground to devise new strategies for the treatment of these diseases based on ligands affecting the activity of this nuclear receptor or some of its protein partners.
Small non-coding RNAs (sncRNAs) represent a heterogeneous group of <200nt-long transcripts comprising microRNAs, PIWI-interacting RNAs (piRNAs) and small-nucleolar-RNAs (snoRNAs) involved in physiological and pathological processes such as carcinogenesis and tumor progression. Aberrant sncRNA expression in cancer has been associated with specific clinical phenotypes, grading, staging, metastases development and resistance to therapy.Aim of the present work is to study the role of sncRNAs in endometrial carcinogenesis. Changes in sncRNA expression were identified by high-throughput genomic analysis of paired normal, hyperplastic and cancerous endometrial tissues obtained by endometrial biopsies (n = 10). Using smallRNA sequencing and microarrays we identified significant differences in sncRNA expression pattern between normal, hyperplastic and neoplastic endometrium. This led to the definition of a sncRNA signature (129 microRNAs, 2 of which not previously described, 10 piRNAs and 3 snoRNAs) of neoplastic transformation. Functional bioinformatics analysis identified as downstream targets multiple signaling pathways potentially involved in the hyperplastic and neoplastic tissue responses, including Wnt/β-catenin, and ERK/MAPK and TGF-β-Signaling.Considering the regulatory role of sncRNAs, this newly identified sncRNA signature is likely to reflect the events leading to endometrial cancer, which can be exploited to dissect the carcinogenic process including novel biomarkers for early and non-invasive diagnosis of these tumors.
The ability of the liver to regenerate and adjust its size after two/third partial hepatectomy (PH) is impaired in old rodents and humans. Here, we investigated by microarray analysis the expression pattern of hepatic genes in young and old untreated mice and the differences in gene expression profile following PH. Of the 10,237 messenger RNAs that had detectable expression, only 108 displayed a greater than 2-fold modification in gene expression levels between the two groups.These genes were involved in inflammatory and immune response, xenobiotics, and lipid and glucose metabolism. To identify the genes responsible for the different regenerative response, 10-week and 18-monthold mice subjected to PH were sacrificed at different time intervals after surgery. The results showed that 2463 transcripts had significantly different expression post PH between the two groups. However, in spite of impaired liver regeneration in old mice, cell cycle genes were similarly modified in both groups, the only exception being cyclin D1 gene which was up-regulated soon after PH in young mice, but mostly down-regulated in aged animals. Surprisingly, while in young hepatectomized mice, Yap messenger RNA (mRNA) expression was not significantly enhanced and protein expression essentially reflected the progression into cell cycle, its mRNA and protein levels were robustly increased in the liver of aged animals. Furthermore, a significant change of the age-related expression of the size regulator Yesassociated protein (YAP) was observed. Unexpectedly, while in young hepatectomized mice, Yap mRNA expression was not significantly enhanced and protein expression essentially reflected the progression into cell cycle, its mRNA and protein levels were robustly increased in the liver of aged animals. Moreover, when PH was performed on mitogen-induced enlarged livers, the earlier restoration of the original liver mass compared to animals subjected to PH only led to YAP downregulation concomitantly with cyclin D1 up-regulation. Our data suggest that YAP activation is a size-dependent homeostatic mechanism that does not necessarily reflect cell cycle progression.
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease, representing the most aggressive breast cancer (BC) subtype with limited treatment options due to a lack of estrogen receptor alpha (ERα), progesterone receptor (PR), and Erb-B2 receptor tyrosine kinase 2 (HER2/neu) expression. Estrogen receptor beta (ERβ) is present in a fraction of TNBC patients, where its expression correlates with improved patient outcomes, supported by the fact that it exerts oncosuppressive effects in TNBC cell models in vitro. ERβ is involved in microRNA-mediated regulation of gene expression in hormone-responsive BC cells and could mediate its actions through small noncoding RNAs (sncRNAs) in TNBCs also. To verify this possibility, smallRNA sequencing was performed on three ERβ-expressing cell lines from different TNBC molecular subtypes. Several sncRNAs resulted modulated by ERβ, with a subset being regulated in a tumor subtype-independent manner. Interestingly, sncRNA profiling of 12 ERβ+and 32 ERβ− primary TNBC biopsies identified 7 microRNAs, 1 PIWI-interacting RNA (piRNA), and 1 transfer RNA (tRNA) differentially expressed in ERβ+ compared to ERβ− tumors and cell lines. Among them, miR-181a-5p was found to be overexpressed in ERβ+ tumors and predicted target key components of the cholesterol biosynthesis pathway previously found to be inhibited by ERβ in TNBC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.