Crossing symmetry (CS) is the main tool in the bootstrap program applied to CFT. This consists in an equality which imposes restrictions on the CFT data of a model, i.e., the OPE coefficients and the conformal dimensions. Reflection positivity (RP) has also played a role in this program, since this condition is what leads to the unitary bound and reality of the OPE coefficients. In this paper, we show that RP can still reveal more information, explaining how RP itself can capture an important part of the restrictions imposed by the full CS equality. In order to do that, we use a connection used by us in a previous work between RP and positive definiteness of a function of a single variable. This allows us to write constraints on the OPE coefficients in a concise way. These constraints are encoded in the conditions that certain functions of the cross-ratio will be positive defined and in particular completely monotonic. We will consider how the bounding of scalar conformal dimensions and OPE coefficients arise in this RP based approach. We will illustrate the conceptual and practical value of this view trough examples of general CFT models in d-dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.