The ability to engineer proteins by directed evolution requires functional expression of the target polypeptide in a recombinant host suitable for construction and screening libraries of enzyme variants. Bacteria and yeast are preferred, but eukaryotic proteins often fail to express in active form in these cells. We have attempted to resolve this problem by identifying mutations in the target gene that facilitate its functional expression in a given recombinant host. Here we examined expression of HRP in Saccharomyces cerevisiae. Through three rounds of directed evolution by random point mutagenesis and screening, we obtained a 40-fold increase in total HRP activity in the S.cerevisiae culture supernatant compared with wild-type, as measured on ABTS ¿2, 2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (260 units/l/OD(600)). Genes from wild-type and two high-activity clones were expressed in Pichia pastoris, where the total ABTS activity reached 600 units/l/OD(600) in shake flasks. The mutants show up to 5.4-fold higher specific activity towards ABTS and 2.3-fold higher specific activity towards guaiacol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.