Significantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4 + T follicular helper (GC Tfh) cells problematic. The CXCL13-CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS + (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings.T he germinal center (GC) reaction is a critical immunological process that occurs in draining lymph nodes after immunization (1). The GC response consists of antigen-specific B cells undergoing affinity maturation through a process of somatic hypermutation (SHM) of the B-cell receptor. SHM is necessary for producing high-affinity Ab responses after immunizations and infections. Influenza neutralizing Abs have substantial SHM. Particularly high levels of SHM, 15-30% amino acid mutation (2, 3), are present and necessary for broad Ab neutralization of diverse HIV strains (4, 5). Therefore, as candidate influenza and HIV vaccines are evaluated for the ability to induce broadly neutralizing antibodies (bnAbs), the quantitation and functional characterization of GC responses will be a key parameter for study. Serological analysis of vaccine-specific Ab titers provides important information, but those data are limited. Serological outcomes are measured at time points long after initial immunizations. Neutralizing Ab responses are commonly only measurable after multiple boosts. Those outcomes likely depend on GC activity and affinity maturation at much earlier time points. Several state of the art HIV vaccine strategies rely on long, multistage immunization protocols (6, 7). With bnAb responses as the goal, means of early analysis of the immune response will be essential to understand and improve on vaccination schemes that may end in failure or only partial success. One critical parameter to assess will be the ability of each immunization to generate GC responses.Central to the GC re...
BackgroundClinical laboratory reference intervals have not been established in many African countries, and non-local intervals are commonly used in clinical trials to screen and monitor adverse events (AEs) among African participants. Using laboratory reference intervals derived from other populations excludes potential trial volunteers in Africa and makes AE assessment challenging. The objective of this study was to establish clinical laboratory reference intervals for 25 hematology, immunology and biochemistry values among healthy African adults typical of those who might join a clinical trial.Methods and FindingsEqual proportions of men and women were invited to participate in a cross sectional study at seven clinical centers (Kigali, Rwanda; Masaka and Entebbe, Uganda; two in Nairobi and one in Kilifi, Kenya; and Lusaka, Zambia). All laboratories used hematology, immunology and biochemistry analyzers validated by an independent clinical laboratory. Clinical and Laboratory Standards Institute guidelines were followed to create study consensus intervals. For comparison, AE grading criteria published by the U.S. National Institute of Allergy and Infectious Diseases Division of AIDS (DAIDS) and other U.S. reference intervals were used. 2,990 potential volunteers were screened, and 2,105 (1,083 men and 1,022 women) were included in the analysis. While some significant gender and regional differences were observed, creating consensus African study intervals from the complete data was possible for 18 of the 25 analytes. Compared to reference intervals from the U.S., we found lower hematocrit and hemoglobin levels, particularly among women, lower white blood cell and neutrophil counts, and lower amylase. Both genders had elevated eosinophil counts, immunoglobulin G, total and direct bilirubin, lactate dehydrogenase and creatine phosphokinase, the latter being more pronounced among women. When graded against U.S.-derived DAIDS AE grading criteria, we observed 774 (35.3%) volunteers with grade one or higher results; 314 (14.9%) had elevated total bilirubin, and 201 (9.6%) had low neutrophil counts. These otherwise healthy volunteers would be excluded or would require special exemption to participate in many clinical trials.ConclusionsTo accelerate clinical trials in Africa, and to improve their scientific validity, locally appropriate reference ranges should be used. This study provides ranges that will inform inclusion criteria and evaluation of adverse events for studies in these regions of Africa.
SUMMARY The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ~11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways.
HIV epidemiology informs prevention trial design and program planning. Nine clinical research centers (CRC) in sub-Saharan Africa conducted HIV observational epidemiology studies in populations at risk for HIV infection as part of an HIV prevention and vaccine trial network. Annual HIV incidence ranged from below 2% to above 10% and varied by CRC and risk group, with rates above 5% observed in Zambian men in an HIV-discordant relationship, Ugandan men from Lake Victoria fishing communities, men who have sex with men, and several cohorts of women. HIV incidence tended to fall after the first three months in the study and over calendar time. Among suspected transmission pairs, 28% of HIV infections were not from the reported partner. Volunteers with high incidence were successfully identified and enrolled into large scale cohort studies. Over a quarter of new cases in couples acquired infection from persons other than the suspected transmitting partner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.