Recently new European policies on ambient air quality--namely, the adoption of new standards for fine particulate matter (PM(2.5)), have generated a broad debate about choosing the air quality standards that can best protect public health. The Apheis network estimated the number of potential premature deaths from all causes that could be prevented by reducing PM(2.5) annual levels to 25 microg/m3, 20 microg/m3, 15 microg/m3 and 10 microg/m3 in 26 European cities. The various PM(2.5) concentrations were chosen as different reductions based on the limit values proposed by the new European Directive, the European Parliament, the US Environmental Protection Agency and the World Health Organization, respectively. The Apheis network provided the health and exposure data used in this study. The concentration-response function (CRF) was derived from the paper by Pope et al (2002). If no direct PM(2.5 )measurements were available, then the PM(10) measurements were converted to PM(2.5 )using a local or an assumed European conversion factor. We performed a sensitivity analysis using assumptions for two key factors--namely, CRF and the conversion factor for PM(2.5). Specifically, using the "at least" approach, in the 26 Apheis cities with more than 40 million inhabitants, reducing annual mean levels of PM(2.5) to 15 microg/m3 could lead to a reduction in the total burden of mortality among people aged 30 years and over that would be four times greater than the reduction in mortality that could be achieved by reducing PM(2.5) levels to 25 microg/m3 (1.6% vs 0.4% reduction) and two times greater than a reduction to 20 microg/m3. The percentage reduction could grow by more than seven times if PM(2.5) levels were reduced to 10 microg/m3 (3.0% vs 0.4%). This study shows that more stringent standards need to be adopted in Europe to protect public health, as proposed by the scientific community and the World Health Organization.
BackgroundConsistent evidence has demonstrated that smoking ban policies save lives, but impacts on health inequalities are uncertain as few studies have assessed post-ban effects by socioeconomic status (SES) and findings have been inconsistent. The aim of this study was to assess the effects of the national Irish smoking ban on ischemic heart disease (IHD), stroke, and chronic obstructive pulmonary disease (COPD) mortality by discrete and composite SES indicators to determine impacts on inequalities.MethodsCensus data were used to assign frequencies of structural and material SES indicators to 34 local authorities across Ireland with a 2000–2010 study period. Discrete indicators were jointly analysed through principal component analysis to generate a composite index, with sensitivity analyses conducted by varying the included indicators. Poisson regression with interrupted time-series analysis was conducted to examine monthly age and gender-standardised mortality rates in the Irish population, ages ≥35 years, stratified by tertiles of SES indicators. All models were adjusted for time trend, season, influenza, and smoking prevalence.ResultsPost-ban mortality reductions by structural SES indicators were concentrated in the most deprived tertile for all causes of death, while reductions by material SES indicators were more equitable across SES tertiles. The composite indices mirrored the results of the discrete indicators, demonstrating that post-ban mortality decreases were either greater or similar in the most deprived when compared to the least deprived for all causes of death.ConclusionsOverall findings indicated that the national Irish smoking ban reduced inequalities in smoking-related mortality. Due to the higher rates of smoking-related mortality in the most deprived group, even equitable reductions across SES tertiles resulted in decreases in inequalities. The choice of SES indicator was influential in the measurement of effects, underscoring that a differentiated analytical approach aided in understanding the complexities in which structural and material factors influence mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.