This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.
Deep neural network (DNN) architectures have been shown to outperform traditional pipelines for object segmentation and pose estimation using RGBD data, but the performance of these DNN pipelines is directly tied to how representative the training data is of the true data. Hence a key requirement for employing these methods in practice is to have a large set of labeled data for your specific robotic manipulation task, a requirement that is not generally satisfied by existing datasets. In this paper we develop a pipeline to rapidly generate high quality RGBD data with pixelwise labels and object poses. We use an RGBD camera to collect video of a scene from multiple viewpoints and leverage existing reconstruction techniques to produce a 3D dense reconstruction. We label the 3D reconstruction using a human assisted ICPfitting of object meshes. By reprojecting the results of labeling the 3D scene we can produce labels for each RGBD image of the scene. This pipeline enabled us to collect over 1,000,000 labeled object instances in just a few days. We use this dataset to answer questions related to how much training data is required, and of what quality the data must be, to achieve high performance from a DNN architecture. Our dataset and annotation pipeline are available at labelfusion.csail.mit.edu.
Abstract-For humanoid robots to fulfill their mobility potential they must demonstrate reliable and efficient locomotion over rugged and irregular terrain. In this paper we present the perception and planning algorithms which have allowed a humanoid robot to use only passive stereo imagery (as opposed to actuating a laser range sensor) to safely plan footsteps to continuously walk over rough and uneven surfaces without stopping. The perception system continuously integrates stereo imagery to build a consistent 3D model of the terrain which is then used by our footstep planner which reasons about obstacle avoidance, kinematic reachability and foot rotation through mixed-integer quadratic optimization to plan the required step positions. We illustrate that our stereo imagery fusion approach can measure the walking terrain with sufficient accuracy that it matches the quality of terrain estimates from LIDAR. To our knowledge this is the first such demonstration of the use of computer vision to carry out general purpose terrain estimation on a locomoting robot -and additionally to do so in continuous motion. A particular integration challenge was ensuring that these two computationally intensive systems operate with minimal latency (below 1 second) to allow re-planning while walking. The results of extensive experimentation and quantitative analysis are also presented. Our results indicate that a laser range sensor is not necessary to achieve locomotion in these challenging situations.
The DARPA Robotics Challenge Trials held in December 2013 provided a landmark demonstration of dexterous mobile robots executing a variety of tasks aided by a remote human operator using only data from the robot's sensor suite transmitted over a constrained, fieldrealistic communications link. We describe the design considerations, architecture, implementation and performance of the software that Team MIT developed to command and control an Atlas humanoid robot. Our design emphasized human interaction with an efficient motion planner, where operators expressed desired robot actions in terms of affordances fit using perception and manipulated in a custom user interface. We highlight several important lessons we learned while developing our system on a highly compressed schedule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.