This study evaluated the effect of surface pretreatments on resin composite bonding to polyetheretherketone (PEEK). Four groups of surface pretreatment (no pretreatment, etched with 98% sulfuric acid, etched with piranha solution and sandblasting with 50 µm alumina) were performed on PEEK. Surface roughness, Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis were examined. Shear bond strength (SBS) and interface characteristics were also evaluated after the specimens were bonded with resin materials. Two-way ANOVA analysis revealed significance on two main effects and interactions. Tukey's multiple comparisons test showed that the SBS of resin composite on PEEK were the highest in the group etched with 98% sulfuric acid and bonded with Heliobond ® (p<0.05). All pretreatments produced similar spectra of FTIR patterns. SEM demonstrated porosities and pitting from chemical etching, which suggested a significant influence on the adhesion between PEEK and resin materials.
This study evaluated the effects of surface pretreatment with different concentrations of sulfuric acid etching on surface properties and bonding between Polyetheretherketone (PEEK) and a resin composite. Six groups of surface pretreatment (no pretreatment, etched with 70, 80, 85, 90, and 98% sulfuric acid for 60 s) were treated on PEEK. Surface roughness, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses were examined. Shear bond strength (SBS) and cross-sectional observations of the interfaces were performed. One-way ANOVA analysis revealed differences in surface roughness and SBS between groups. The 90 and 98% sulfuric acid etching significantly achieved the highest SBS (p<0.05). SEM and AFM demonstrated etched surfaces with wide and deep pores. The 90 and 98% sulfuric acid etching were suggested to be the optimal concentration to improve adhesion between PEEK and the resin composite.
Microstructural analyses indicated that female ED bone was more compact and with greater trabecular connectedness than male bone. These features may enhance resistance to external force transfer of mastication compared with male bone. Further bone samples from other jaw bone areas will provide information on whether there are regional differences in jawbone quality and quantity, which may influence implant treatment outcomes, as well as follow-up analyses of treatment outcomes.
Most 3D scanners use optical technology that is impacted by lighting conditions, especially in triangulation with structured-light or laser techniques. However, the effect of ambient lights on the accuracy of the face scans remains unclear. The purpose of this study is to investigate the effect of ambient lights on the accuracy of the face scans obtained from the face scanner (EinScan Pro 2X Plus, Shining 3D Tech. Co., LTD., Hangzhou, China). A head model was designed in Rhinoceros 5 software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA) and printed with 200 micron resolution of polylactic acid and was dented with 2.0 mm of carbide bur to aid in superimposition in software. The head model was measured by a coordinate-measuring machine (CMM) to generate a reference stereolithography (STL) file as a control. The face model was scanned four times under nine light conditions: cool white (CW), warm white (WW), daylight (DL), natural light (NL), and illuminant (9w, 18w, 22w). Scan data were exported into an STL file. The scan STL files obtained were compared with the reference STL file by 3D inspection software (Geomagic Control X version 17, Geomagic, Morrisville, NC, USA). The deviations and root mean square errors (RMSEs) between the reference model (trueness) and within the group (precision) were selected for the statistical analysis. The statistical analysis was done using SPSS 20.0 (IBM Company, Chicago, USA). The trueness and precision were evaluated with the one-way ANOVA with multiple comparisons using the Tukey method. For trueness, the scanner showed the lowest RMSE under the NL group (77.18 ± 3.22) and the highest RMSE under the 18w-DL group (95.33 ± 6.89). There was a statistically significant difference between the NL group and the 18w-DL group (p < 0.05) for trueness. Similarly, for precision, the scanner showed the lowest RMSE under the NL group (56.92 ± 4.56) and the highest RMSE under the 9w-CW group (78.52 ± 10.61). There was statistically significant difference between NL, 18w-WW, 18w-CW, 18w-DL, 22w-WW, 22w-DL, 9w-CW, 9w-WW, and 9w-DL (p < 0.05) for the precision. Ambient lights affected the face scans. Under the natural light condition, the face scanner had the best accuracy in terms of both trueness and precision. The 18w-DL and 9w-WW conditions showed the least trueness whereasthe 9w-CW and 9w-DL conditions showed the least precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.