The alcoholic extract from seed kernels of Thai mango (Mangifera indica L. cv. ‘Fahlun’) (Anacardiaceae) and its major phenolic principle (pentagalloylglucopyranose) exhibited potent, dose-dependent inhibitory effects on tyrosinase with respect to L-DOPA. Molecular docking studies revealed that the binding orientations of the phenolic principles were in the tyrosinase binding pocket and their orientations were located in the hydrophobic binding pocket surrounding the binuclear copper active site. The results indicated a possible mechanism for their anti-tyrosinase activity which may involve an ability to chelate the copper atoms which are required for the catalytic activity of tyrosinase.
The ethanolic extract from seed kernels of Thai mango (MSKE) (Mangifera indica L. cv. ‘Fahlun’) (Anacardiaceae) and its major phenolic principle (pentagalloyl glucopyranose) exhibited dose-dependent inhibitory effects on enzymatic activities of phospholipase A2 (PLA2), hyaluronidase and L-amino acid oxidase (LAAO) of Calloselasma rhodostoma (CR) and Naja naja kaouthia (NK) venoms by in vitro tests. The anti-hemorrhagic and anti-dermonecrotic activities of MSKE against both venoms were clearly supported by in vivo tests. Molecular docking studies indicated that the phenolic molecules of the MSKE could selectively bind to the active sites or their proximity, or modify conserved residues that are critical for the catalysis of PLA2, and selectively bind to the LAAO binding pocket of both CR and NK venoms and thereby inhibit their enzymatic activities. The results imply a potential use of MSKE against snake venoms.
Snakebite envenomations cause severe local tissue necrosis and the venom metalloproteinases are thought to be the key toxins involved. In this study, the ethanolic extract from seed kernels of Thai mango (Mangifera
indica L. cv. ‘Fahlun’) (Anacardiaceae) and its major phenolic principle (pentagalloylglucopyranose) exhibited potent and dose−dependent inhibitory effects on the caseinolytic and fibrinogenolytic activities of Malayan pit viper and Thai cobra venoms in in vitro tests. Molecular docking studies revealed that the binding orientations of the phenolic principles were in the binding pockets of snake venom metalloproteinases (SVMPs). The phenolic principles could form hydrogen bonds with the three histidine residues in the conserved zinc−binding motif and could chelate the Zn2+ atom of the SVMPs, which could potentially result in inhibition of the venom enzymatic activities and thereby inhibit tissue necrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.