The d(C-G-T-A-C-epsilon C-C-A-T-G-C).d(G-C-A-T-G-A-G-T-A-C-G) oligodeoxynucleotide duplex containing the 3, N4-etheno-2'-deoxycytidine adduct positioned opposite 2'-deoxyadenosine in the center of the helix has been analyzed by proton NMR spectroscopy and restrained molecular dynamics. The spectroscopic data establish a right-handed duplex, with sugar puckers in the C2'-endo/C3'-exo range, residues adopting an anti conformation around the glycosidic torsion angle and, with the exception of epsilon C.dA, Watson-Crick hydrogen bond alignment for all base pairs. Molecular dynamics simulations, restrained by the full relaxation matrix approach, produced a three-dimensional model with an NMR R-factor of 7%. The duplex structure shows no significant perturbation of the sugar-phosphate backbone, which remains in B-form. The exocyclic adduct and its partner dA are incorporated into the helix without producing a noticeable kink. The epsilon C.dA alignment adopts a staggered conformation with each residue displaced toward the 5'-terminus and intercalated between bases on the opposite strand, without increase of inter-phosphate distances. The partial intercalation of the epsilon C (anti).dA(anti) alignment allows stacking between the aromatic rings of epsilon C and dA and with base pairs adjacent to the lesion, suggesting an important role played by hydrophobic forces in the stabilization of the solution structure.
Formation of meiotic DNA double-strand breaks (DSBs) by Spo11is tightly regulated and tied to chromosome structure, but the higher-order assemblies that execute and control DNA breakage are poorly understood. We address this question through molecular characterization of Saccharomyces cerevisiae RMM proteins (Rec114, Mei4 and Mer2)-essential, conserved components of the DSB machinery. Each subcomplex of Rec114-Mei4 (2:1 heterotrimer) or Mer2 (homotetrameric coiled coil) is monodisperse in solution, but they independently condense with DNA into dynamic, reversible nucleoprotein clusters that share properties with phase-separated systems. Multivalent interactions drive condensation, which correlates with DSB formation in vivo. Condensates fuse into mixed Rec114-Mei4-Mer2 clusters that further recruit Spo11 complexes. Our data show how the DSB machinery self-assembles on chromosome axes to create centers of DSB activity. We propose that multilayered control of Spo11 arises from recruitment of regulatory components and modulation of biophysical properties of the condensates.The role of Rec114-Mei4 and Mer2 in meiosis
The structures of the physical complex of d(GCGT).d(ACGC) with the anthracycline antitumor drug nogalamycin were studied in order to determine the sequence specificity and the drug orientation at the symmetric d(C2G3).d(C6G7) binding site of this oligonucleotide. For this purpose, one- and two-dimensional NMR techniques were used in combination with molecular mechanics and molecular dynamics computations. Analysis of the NMR spectra reveals that nogalamycin forms two different intercalation complexes with d(GCGT).d(ACGC). These complexes are called complex I and complex II and are present in a ratio of 0.45:0.55. In both complexes the nogalamycin is intercalated at the d(C2G3).d(C6G7) sequence with the bicyclic and nogalose sugars residing in the major and minor groove, respectively. This results in a buckling of the flanking base pairs and a doubling of the inter-base-pair distances at the intercalation site. In complex I, the aglycon ring of the drug stacks with the C6-G7 bases, and the sugars are directed to the G1.C8 end; while in the case of complex II the anthraquinone ring system is stacked with C2-G3 bases, and the sugars are pointed to the T4.A5 base pair end. The two nogalamycin-d(GCGT).d(ACGC) structures are stabilized by intra- and intermolecular hydrogen bonds, electrostatic interactions, and van der Waals contacts. Comparison of different nogalamycin-oligonucleotide structures reveals a nogalamycin binding specificity to the 3'-side of the cytosine base in cytosine-purine sequences in double-stranded DNA.
Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance-type cytosine methyltransferase identified in the fungal or protist kingdoms. DNMT5 requires ATP and displays exquisite hemimethyl-DNA specificity. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out the DNA duplex. ATP binding then triggers a striking structural reconfiguration of the methyltransferase catalytic pocket that enables cofactor binding, completion of base-flipping, and catalysis. Unmethylated DNA binding fails to open cofactor pocket and subsequent ATP binding triggers its ejection to ensure fidelity. This chaperone-like, enzyme-remodeling role of the SNF2 domain illuminates how energy can be used to enable faithful epigenetic memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.