Cations such as Lewis acids have been shown to enhance the catalytic activity of high-valent Fe−oxygen intermediates. Herein, we present a pyridine diamine ethylene glycol macrocycle, which can form Zn(II)-or Fe(III)-complex with the NNN site, while allowing redox-inactive cations to bind to the ethylene glycol moiety. The addition of alkali, alkali earth, and lanthanum ions resulted in positive shifts to the Fe(III/II) redox potential. Calculation of dissociation constants showed the tightest binding with a Ba 2+ ion. Density functional theory calculations were used to elucidate the effects of redox inactive cations toward the electronic structures of Fe complexes. Although the Fe−NNN complexes, both in the absence and presence of cations, can catalyze C−H oxidation of 9,10-dihydroanthracene, to give anthracene [hydrogen atom transfer (HAT) product], anthrone, and anthraquinone [oxygen atom transfer (OAT) products], highest overall activity and OAT/HAT product ratios were obtained in the presence of dications, that is, Ba 2+ and Mg 2+ , respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.