Nowadays, managing for optimal security to wireless sensor networks (WSNs) has emerged as an active research area. The challenging topics in this active research involve various issues such as energy consumption, routing algorithms, selection of sensors location according to a given premise, robustness, and efficiency. Despite the open problems in WSNs, already a high number of applications available shows the activeness of emerging research in this area. Through this paper, authors propose an alternative routing algorithmic approach that accelerate the existing algorithms in sense to develop a power-efficient crypto system to provide the desired level of security on a smaller footprint, while maintaining real-time performance and mapping them to customized hardware. To achieve this goal, the algorithms have been first analyzed and then profiled to recognize their computational structure that is to be mapped into hardware accelerators in platform of reconfigurable computing devices. An intensive set of experiments have been conducted and the obtained results show that the performance of the proposed architecture based on algorithms implementation outperforms the software implementation running on contemporary CPU in terms of the power consumption and throughput.
Systematic pursuits are being developed to set forth the framework for the Fifth Generation (5G) wireless standards. This paper emphases on the most extensively deployed technology - Orthogonal Frequency Division Multiplexing (OFDM) that has outpaced other waveform aspirants for Fourth Generation (4G) communication standards. Irrespective of the beneficial features, it does possess a number of significant limitations that mark it as an incompatible candidate for the upcoming 5G standard. This paper highlights on its major drawback i.e high Peak-to-Average Power Ratio (PAPR). Results state that PAPR does cause sudden upsurge to the output signal envelope causing further other damages. There exists a need for more flexible waveforms to replace the conventional OFDM in order to address the unprecedented challenges. The future research directions in the domain are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.