The akamu samples were predominantly starchy foods and had pH < 4.0 owing to the activities of fermentative LAB.
The nutrient and sensory properties of malted pre-gelatinized maize supplemented with varying amounts of soy and carrot flour was evaluated. The blends (Malted pre-gelatinized maize flour : Soy flour : Carrot flour) in grams were: A (80: 20: 0), B (73.125: 23.125: 3.75), C (66.250: 26.250: 7.50), D (65.625: 23.125:11.25), E (65: 20:15), F (63.125: 33.125: 3.75), G (63.125:25.625: 11.25), H (60: 25: 15) and I (100:0:0). There were significant (P ≤ 0.5) differences in the proximate composition of the blends. The moisture content ranged between 3.55 - 8.10%. The protein content of the samples increased (P ≤ 0.5) with the increase in soy substitution and varied from 11.61% for the control (sample I) to 21.53% for sample F. The fat, ash and crude fibre content of the blends varied from 1.68 - 10.86, 1.45 - 2.8 and 0.20 - 4.40% respectively. The control had significantly (P ≤ 0.5) the highest carbohydrate content of 75.61%, while it varied between 55.30 and 71.60 % for others. The energy values varied from 360.43 - 405.00 Kcal/g. The sensory scores were based on a 9-point hedonic scale, with 1 and 9 expressed as dislike extremely and like extremely. The assessors’ likeness for the sensory attributes (colour, texture, taste, aroma and general acceptability) was below neither like nor dislike. This study revealed that substitution with soybeans and carrot flours increased the nutrient composition of the malted pre-gelatinized maize, soybean and carrot flour blends. Particularly the soy flour as sample F with the highest soy flour substitution (33. 123g) had significantly the highest protein (21.53%), fat (10.86%) and energy (405 Kcal/g) values. This would be recommended for good quality porridge. Although, the sensory analysis revealed the need for further investigation on processing methods especially the malting process as to enhance the overall acceptability of the product.
Akamu is a lactic acid bacteria fermented cereal-based food that complements infant diets in most African countries. The effect of fermentation with Lactobacillus (L.) plantarum starter culture and gammairradiation on the pasting and morphological properties of Akamu was investigated. The sensory property of porridges from the L. plantarum fermentation and artificially acidified maize slurries was also investigated. The irradiated ground maize (IGM) and its L. plantarum strain fermented samples had significantly (p<0.05) the lowest peak (128.70 -135.33 RVU) and final viscosities (68.50 -108.33 RVU). Un-irradiated ground maize (GM) and the traditionally fermented samples had significantly (p<0.05) the highest pasting properties (1920.50 -2641.00 and 3378.80 -3819.00 RVU for peak and final viscosities respectively). Scanning electron microscopy revealed the granular structure of starch: fermented samples had etches, while irradiated granules were rough and different from its un-irradiated counterpart. Porridges of the un-irradiated ground maize and the traditionally fermented sample had thick and solid linkages against the weak and viscous nature of irradiated samples. The sensory attributes (flavour, sourness, and overall acceptability) of the porridges from L. plantarum fermented sample was significantly (p>0.05) the most acceptable to the assessors. This study revealed that irradiation lowered the pasting properties of the maize slurries and caused changes in the morphological properties of both the uncooked slurries and their porridges. The sensory attributes of Porridge from the L. plantarum fermented maize slurry were most acceptable to the assessors.
This study investigated the ability of two strains of Lactobacillus plantarum isolated from akamu a Nigerian fermented maize food to tolerate acid and bile condition. Auto-aggregation and co-aggregation with pathogens: Escherichia coli NCTC 11560 and Salmonella Enteritidis NCTC 5188 were also investigated. This was aimed at establishing preliminary probiotic potentials of these none intestinal L. plantarum isolates. Viability at pH 2 was significantly (p≤0.05) reduced from ≥8.26±0.05 to ≤4.94±0.49 Log 10 CFU/mL after 3 h. Subsequent incubation in 0.3% ox gall bile media after 6 h enhanced growth to 5.73±0.13 and 7.93±0.12 Log 10 CFU/mL for NGL5 and NGL7. The L. plantarum strains auto-aggregated but had no co-aggregation with the pathogens. After 5 h auto-aggregation at 37°C (>25%) was significantly (p≤0.05) greater than auto-aggregation at 22-24°C (<14%). The L. plantarum strains possessed abilities to survive passage through the GIT and auto-aggregated significantly at body temperature. This serves as a baseline data for further studies especially isolates that are not of intestinal origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.