BackgroundAiming for early disease detection and prompt outbreak control, digital technology with a participatory One Health approach was used to create a novel disease surveillance system called Participatory One Health Disease Detection (PODD). PODD is a community-owned surveillance system that collects data from volunteer reporters; identifies disease outbreak automatically; and notifies the local governments (LGs), surrounding villages, and relevant authorities. This system provides a direct and immediate benefit to the communities by empowering them to protect themselves.ObjectiveThe objective of this study was to determine the effectiveness of the PODD system for the rapid detection and control of disease outbreaks.MethodsThe system was piloted in 74 LGs in Chiang Mai, Thailand, with the participation of 296 volunteer reporters. The volunteers and LGs were key participants in the piloting of the PODD system. Volunteers monitored animal and human diseases, as well as environmental problems, in their communities and reported these events via the PODD mobile phone app. LGs were responsible for outbreak control and provided support to the volunteers. Outcome mapping was used to evaluate the performance of the LGs and volunteers.ResultsLGs were categorized into one of the 3 groups based on performance: A (good), B (fair), and C (poor), with the majority (46%,34/74) categorized into group B. Volunteers were similarly categorized into 4 performance groups (A-D), again with group A showing the best performance, with the majority categorized into groups B and C. After 16 months of implementation, 1029 abnormal events had been reported and confirmed to be true reports. The majority of abnormal reports were sick or dead animals (404/1029, 39.26%), followed by zoonoses and other human diseases (129/1029, 12.54%). Many potentially devastating animal disease outbreaks were detected and successfully controlled, including 26 chicken high mortality outbreaks, 4 cattle disease outbreaks, 3 pig disease outbreaks, and 3 fish disease outbreaks. In all cases, the communities and animal authorities cooperated to apply community contingency plans to control these outbreaks, and community volunteers continued to monitor the abnormal events for 3 weeks after each outbreak was controlled.ConclusionsBy design, PODD initially targeted only animal diseases that potentially could emerge into human pandemics (eg, avian influenza) and then, in response to community needs, expanded to cover human health and environmental health issues.
UNSTRUCTURED Participatory surveillance has been defined as the bidirectional process of transmitting and receiving data for action by directly engaging the target population. Often represented as self-reported symptoms directly from the public, participatory surveillance can provide evidence of an emerging disease or concentration of symptoms in certain areas, potentially identifying signs of an early outbreak. The construction of sets of symptoms to represent various disease syndromes provides a mechanism for the early detection of multiple health threats. Global Flu View is the first-ever system that merges ILI data from more than eight countries plus one region (Hong Kong) on four continents for global monitoring of this annual health threat. GFV provides a digital ecosystem for spatial and temporal visualization of syndromic aggregates compatible with ILI from the various systems currently participating in GFV in near real-time, updated weekly. In 2018, the first prototype of a digital platform to combine data from several ILI participatory surveillance programs was created, called Global Flu View (GFV). At that time, the priority was to have a digital environment that brought together different programs through an Application Program Interface (API), providing a real-time map of syndromic trends that could demonstrate where and when ILI was spreading in various regions of the globe. After two years running as an experimental model and incorporating feedback from partner programs, GFV was restructured to empower the community of public health practitioners, data scientists and researchers by providing an open data channel among these contributors for sharing experiences across the network. Global Flu View was redesigned to serve not only as a data hub but also as a dynamic knowledge network around participatory ILI surveillance by providing knowledge exchange among programs. Connectivity between existing participatory surveillance systems enables a network of cooperation and collaboration with great potential for continuous public health impact. The exchange of knowledge within this network is not limited only to health professionals and researchers but also provides an opportunity for the general public to have an active voice in the collective construction of health settings. The focus on preparing the next generation of epidemiologists will be of great importance to scale innovative approaches like participatory surveillance. Global Flu View provides a useful example of the value of globally integrated PS data to help reduce the risks and damages of the next pandemic.
This paper reports the work in progress of incorporating a participatory disease detection mechanism into the existing weband mobile device application DoctorMe in Thailand. As Southeast Asia has a high likelihood of hosting potential outbreaks of epidemics it is crucial to enable citizens to collectively contribute to improved public health through crowdsourced data, which is currently lacking. This paper focuses foremost on the localised approach, utilizing elements such as gamification, digital volunteerism and personalised health recommendations for participating users. DoctorMe's participatory disease detection approach aims to tap into the accelerating technological landscape in Thailand and to improve personal health and provide valuable data for institutional analysis that may prevent or decrease the impact of infectious disease outbreaks.
Participatory surveillance (PS) has been defined as the bidirectional process of transmitting and receiving data for action by directly engaging the target population. Often represented as self-reported symptoms directly from the public, PS can provide evidence of an emerging disease or concentration of symptoms in certain areas, potentially identifying signs of an early outbreak. The construction of sets of symptoms to represent various disease syndromes provides a mechanism for the early detection of multiple health threats. Global Flu View (GFV) is the first-ever system that merges influenza-like illness (ILI) data from more than 8 countries plus 1 region (Hong Kong) on 4 continents for global monitoring of this annual health threat. GFV provides a digital ecosystem for spatial and temporal visualization of syndromic aggregates compatible with ILI from the various systems currently participating in GFV in near real time, updated weekly. In 2018, the first prototype of a digital platform to combine data from several ILI PS programs was created. At that time, the priority was to have a digital environment that brought together different programs through an application program interface, providing a real time map of syndromic trends that could demonstrate where and when ILI was spreading in various regions of the globe. After 2 years running as an experimental model and incorporating feedback from partner programs, GFV was restructured to empower the community of public health practitioners, data scientists, and researchers by providing an open data channel among these contributors for sharing experiences across the network. GFV was redesigned to serve not only as a data hub but also as a dynamic knowledge network around participatory ILI surveillance by providing knowledge exchange among programs. Connectivity between existing PS systems enables a network of cooperation and collaboration with great potential for continuous public health impact. The exchange of knowledge within this network is not limited only to health professionals and researchers but also provides an opportunity for the general public to have an active voice in the collective construction of health settings. The focus on preparing the next generation of epidemiologists will be of great importance to scale innovative approaches like PS. GFV provides a useful example of the value of globally integrated PS data to help reduce the risks and damages of the next pandemic.
BACKGROUND Aiming for early disease detection and prompt outbreak control, digital technology with a participatory One Health approach was used to create a novel disease surveillance system called Participatory One Health Disease Detection (PODD). PODD is a community-owned surveillance system that collects data from volunteer reporters; identifies disease outbreak automatically; and notifies the local governments (LGs), surrounding villages, and relevant authorities. This system provides a direct and immediate benefit to the communities by empowering them to protect themselves. OBJECTIVE The objective of this study was to determine the effectiveness of the PODD system for the rapid detection and control of disease outbreaks. METHODS The system was piloted in 74 LGs in Chiang Mai, Thailand, with the participation of 296 volunteer reporters. The volunteers and LGs were key participants in the piloting of the PODD system. Volunteers monitored animal and human diseases, as well as environmental problems, in their communities and reported these events via the PODD mobile phone app. LGs were responsible for outbreak control and provided support to the volunteers. Outcome mapping was used to evaluate the performance of the LGs and volunteers. RESULTS LGs were categorized into one of the 3 groups based on performance: A (good), B (fair), and C (poor), with the majority (46%,34/74) categorized into group B. Volunteers were similarly categorized into 4 performance groups (A-D), again with group A showing the best performance, with the majority categorized into groups B and C. After 16 months of implementation, 1029 abnormal events had been reported and confirmed to be true reports. The majority of abnormal reports were sick or dead animals (404/1029, 39.26%), followed by zoonoses and other human diseases (129/1029, 12.54%). Many potentially devastating animal disease outbreaks were detected and successfully controlled, including 26 chicken high mortality outbreaks, 4 cattle disease outbreaks, 3 pig disease outbreaks, and 3 fish disease outbreaks. In all cases, the communities and animal authorities cooperated to apply community contingency plans to control these outbreaks, and community volunteers continued to monitor the abnormal events for 3 weeks after each outbreak was controlled. CONCLUSIONS By design, PODD initially targeted only animal diseases that potentially could emerge into human pandemics (eg, avian influenza) and then, in response to community needs, expanded to cover human health and environmental health issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.