Zingerone, an active compound that is present in cooked ginger, has been claimed to be a bioactive ingredient that holds the potential of preventing and/or treating diseases involving inflammation. In this study, zingerone was used to discover its properties against joint inflammation using interleukin-1-induced osteoarthritis in cartilage explant and cell culture models. Zingerone was supplemented into the cartilage explant and cell culture media at different concentrations along with the presence of interleukin-1, an inducer of osteoarthritis. Markers indicating cartilage degradation, inflammation, and the signaling molecules involved in the inflammatory induction were investigated. Diacerien, an anti-osteoarthritic drug, was used as a positive control. Zingerone at a concentration of 40 µM reduced the level of matrix metalloproteinase-13 to about 31.95 ± 4.33 % compared with the interleukin-1-treated group and halted cartilage explant degradation as indicated by reducing the accumulative release of sulfated glycosaminoglycans by falling to the control concomitantly with an elevation of the remaining contents of uronic acid and collagen in the explant tissues when zingerone was added. In the SW1353 cell line model, zingerone efficiently suppressed the expression of TNF-, interleukin-6, and interleukin-8 mRNA levels and tended to reduce the levels of both p38 and c-Jun N-terminal kinase phosphorylation. From the results of this study, it can be concluded that zingerone potentially reduced cartilage degradation, which is partially involved in p38 and c-Jun N-terminal kinases of the mitogen activator protein kinase signaling pathway leading to the reduction of proinflammatory cytokine amplification effects and cartilage-degrading enzyme syntheses. This finding supports the contention that ginger holds positive pharmaceutical effects against osteoarthritis.
Combinations of IL-1β and other proinflammatory cytokines reportedly promote the severity of arthritis. We aimed to investigate the effects of IL-1β combined with IL-17A on cartilage degradation and synthesis in in vitro models. Cartilage explant degradation was determined using sulfated glycosaminoglycans (S-GAGs) levels, matrix metalloproteinase (MMP13) gene expression, uronic acid, and collagen contents. Cell morphology and accumulation of proteoglycans were evaluated using hematoxylin-eosin and safranin O staining, respectively. In the pellet culture model, expressions of cartilage-specific anabolic and catabolic genes were evaluated using real-time qRT-PCR. Early induction of MMP13 gene expression was found concomitantly with significant S-GAGs release. During the prolonged period, S-GAGs release was significantly elevated, while MMP-13 enzyme levels were persistently increased together with the reduction of the cartilaginous matrix molecules. The pellet culture showed anabolic gene downregulation, while expression of the proinflammatory cytokines, mediators, and MMP13 genes were elevated. After cytokine removal, these effects were restored to nearly basal levels. This study provides evidence that IL-1β combined with IL-17A promoted chronic inflammatory arthritis by activating the catabolic processes accompanied with the suppression of cartilage anabolism. These suggest that further applications, which suppress inflammatory enhancers, especially IL-17A, should be considered as a target for arthritis research and therapy.
We investigated the effect of transforming growth factor beta 1 (TGF-β1) on equine hyaluronan synthase 2 (HAS2) gene expression and hyaluronan (HA) synthesis in culture models of articular chondrocytes. Equine chondrocytes were treated with TGF-β1 at different concentrations and times in monolayer cultures. In three-dimensional cultures, chondrocyte-seeded gelatin scaffolds were cultured in chondrogenic media containing 10 ng/mL of TGF-β1. The amounts of HA in conditioned media and in scaffolds were determined by enzyme-linked immunosorbent assays. HAS2 mRNA expression was analyzed by semi-quantitative reverse transcription polymerase chain reaction. The uronic acid content and DNA content of the scaffolds were measured by using colorimetric and Hoechst 33258 assays, respectively. Cell proliferation was evaluated by using the alamarBlue assay. Scanning electron microscopy (SEM), histology, and immunohistochemistry were used for microscopic analysis of the samples. The upregulation of HAS2 mRNA levels by TGF-β1 stimulation was dose and time dependent. TGF-β1 was shown to enhance HA and uronic acid content in the scaffolds. Cell proliferation and DNA content were significantly lower in TGF-β1 treatments. SEM and histological results revealed the formation of a cartilaginous-like extracellular matrix in the TGF-β1-treated scaffolds. Together, our results suggest that TGF-β1 has a stimulatory effect on equine chondrocytes, enhancing HA synthesis and promoting cartilage matrix generation.
LL-37 is the only human cathelicidin-family host defense peptide and has been reported to interact with invading pathogens causing inflammation at various body sites. Recent studies showed high levels of LL-37 in the synovial-lining membrane of patients with rheumatoid arthritis, a common type of inflammatory arthritis. The present study aims to investigate the role of LL-37 on mechanisms associated with pathogenesis of inflammatory arthritis. The effects of LL-37 on the expression of proinflammatory cytokines, hyaluronan (HA) metabolism-related genes, cell death-related pathways, and cell invasion were investigated in SW982, a human synovial sarcoma cell line. Time-course measurements of proinflammatory cytokines and mediators showed that LL-37 significantly induced IL6 and IL17A mRNA levels at early time points (3–6 hr). HA-metabolism-related genes (i.e., HA synthase 2 ( HAS2 ), HAS3 , hyaluronidase 1 (HYAL1 ), HYAL2 , and CD44 ) were co-expressed in parallel. In combination, LL-37 and IL17A significantly enhanced PTGS2 , TNF , and HAS3 gene expression concomitantly with the elevation of their respective products, PGE2, TNF, and HA. Cell invasion rates and FN1 gene expression were also significantly enhanced. However, LL-37 alone or combined with IL17A did not affect cell mortality or cell cycle. Treatment of SW982 cells with both LL-37 and IL17A significantly enhanced IKK and p65 phosphorylation. These findings suggest that the chronic production of a high level of LL-37 may synchronize with its downstream proinflammatory cytokines, especially IL17A, contributing to the co-operative enhancement of pathogenesis mechanisms of inflammatory arthritis, such as high production of proinflammatory cytokines and mediators together with the activation of HA-metabolism-associated genes and cell invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.