In this paper, Chula-Sathorn SUMO Simulator (Chula-SSS) has been proposed as an educational tool for traffic police and traffic engineers. The tool supports our framework to develop actuated traffic signal control logics in order to resolve urban traffic congestion. The framework design aims to incorporate the tacit traffic control expertise of human operators by trying to extract and extend the human-level intelligence in actuating logically traffic signal controls. In this regard, a new software package has been developed for the microscopic-mobility computer simulation capability of the SUMO (Simulation of Urban MObility) platform. Using the SUMO TraCI, our package implements the graphical user interface (GUI) of actual traffic light signal control panel, recently introduced in Bangkok (Thailand) for traffic police deployment in the Chulalongkorn University's Sathorn Model project under the umbrella of Sustainable Mobility Project 2.0 of the World Business Council for Sustainable Development (WBCSD). The traffic light signal control panel GUI modules can communicate via TraCI in real-time to SUMO in order both to retrieve the raw traffic sensor data emulated within SUMO and to send the desired traffic light signal phase manually entered via GUI by the module users. Each of the users could play a role of traffic police in charge of actuating the traffic light signal at each of the controllable intersections. To demonstrate this framework, Chula-SSS has been implemented with the calibrated SUMO dataset of Sathorn Road network area. This area is one of the most critical areas in Bangkok due to the immense traffic volume with daily recurring traffic bottlenecks and network deadlocks. The simulation comprises of 2375 intersection nodes, 4517 edges, 10 main signalised intersections. The provided datasets with Chula-SSS cover both the morning and evening rush-hour periods each with over 55,000 simulated vehicles based on the comprehensive traffic data collection and SUMO mobility model calibration. It is hoped that the herein developed framework and software package can be not only useful for our Thailand case, but also readily extensible to those developing and leastdeveloped countries where traffic signal controls rely on human operations, not yet fully automated by an area traffic controller. In those cases, the framework proposed herein is expectedly an enabling technology for the human operators to practice, learn, and evolve their traffic signal control strategies systematically.
Abstract. Traffic problems have become a plague of the society that cannot be abolished. This work considers the city of Bangkok and its urban road traffic problem, with a particular focus on traffic light control. Managing traffic control by generating optimal traffic signal timing is one of the solutions to reduce the delay at intersections. Synchro is used as a platform to achieve two things in this work. First, to initialize optimal cycle lengths of the intersections on Sathorn road. Second, to assist in the implementation of reversible lane that involves two traffic signal lights in short distance. All of the data are obtained by the technical team of Sathorn Model project, most of which are based on the field work. A comparative analysis is conducted between optimal cycle lengths and the actual signal timing as operated by traffic police from real data collection to see the improvement of travel times in various cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.