Abstract. An increasingly desired outcome of engineering education is the ability to engage in selfregulated learning (SRL). One promising method for the formative assessment of SRL is the reflective diary. There is, however, a paucity of research on the use of reflective diaries in engineering education. To mitigate this gap, we report on a case study where reflective diaries were implemented in a master's course on tissue engineering. The objective of this paper is to explore the potential of reflective diaries for the formative assessment of three central aspects of SRL: conceptions of knowledge, conceptions of learning, and strategies for monitoring and regulating learning. Based on a theoretical thematic analysis of the diary entries, we show that reflective diaries can be used to assess these three aspects of SRL. We discuss ways of providing feedback to students, with a focus on dialogic feedback.
Progress with respect to enrichment and separation of native membrane components in complex lipid environments, such as native cell membranes, has so far been very limited. The reason for the slow progress can be related to the lack of efficient means to generate continuous and laterally fluid supported lipid bilayers (SLBs) made from real cell membranes. We show in this work how the edge of a hydrodynamically driven SLB can be used to induce rupture of adsorbed lipid vesicles of compositions that typically prevent spontaneous SLB formation, such as vesicles made of complex lipid compositions, containing high cholesterol content or being derived from real cell membranes. In particular, upon fusion between the moving edge of a preformed SLB and adsorbed vesicles made directly from 3T3 fibroblast cell membranes, the membrane content of the vesicles was shown to be efficiently transferred to the SLB. The molecular transfer was verified using cholera toxin B subunit (CTB) binding to monosialoganglioside receptors (G(M1) and G(M3)), and the preserved lateral mobility was confirmed by spatial manipulation of the G(M1/M3)-CTB complex using a hydrodynamic flow. Two populations of CTB with markedly different drift velocity could be identified, which from dissociation kinetics data were attributed to CTB bound with different numbers of ganglioside anchors.
Experiential learning (EL) has great potential to prepare students to work on interdisciplinary and global challenges across traditional boundaries, as well as support them in the development of reflective skills. In this study, we explore reflection as a central element for EL in the university wide interdisciplinary course Experts in Teamwork (EiT). Based upon 17 years of experience with the development of EiT, perspectives from the literature, and critically analyzing current practices, we describe two key findings from this ongoing exploration: the need to develop a framework for such a course and the need for training of teaching staff.
Equilibrium fluctuation analysis of single binding events has been used to extract binding kinetics of ligand interactions with cell-membrane bound receptors. Time-dependent total internal reflection fluorescence (TIRF) imaging was used to extract residence-time statistics of fluorescently stained liposomes derived directly from cell membranes upon their binding to surface-immobilized antibody fragments. The dissociation rate constants for two pharmaceutical relevant antibodies directed against different B-cell expressed membrane proteins was clearly discriminated, and the affinity of the interaction could be determined by inhibiting the interaction with increasing concentrations of soluble antibodies. The single-molecule sensitivity made the analysis possible without overexpressed membrane proteins, which makes the assay attractive in early drug-screening applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.