Transcranial direct current stimulation (tDCS) is a non-invasive method to modulate cortical excitability. This technique is a promising emerging tool to treat several neuropathologies, including addiction. We have previously shown in mice that repeated tDCS normalizes pathological behaviors associated with chronic nicotine exposure. Here, we evaluated, in adult female mice, the impact of tDCS on cocaine-induced behavior and gene regulation in corticostriatal circuits implicated in psychostimulant addiction. Anodal tDCS was applied transcranially over the frontal cortex. Three weeks after repeated tDCS, we investigated the induction of a gene expression marker (Zif268) by cocaine (25 mg/kg) in 26 cortical and 23 striatal regions using in situ hybridization histochemistry. We also assessed place preference conditioning by cocaine (5, 10, and 25 mg/kg). tDCS pretreatment increased basal expression and attenuated cocaine (25 mg/kg)-induced expression of Zif268 in specific corticostriatal circuits. Cocaine-induced locomotor activation (25 mg/kg) and place preference conditioning (5 and 25 mg/kg) were also reduced. These results demonstrate that tDCS can attenuate molecular and behavioral responses to cocaine for several weeks. Together, our findings provide pre-clinical evidence that such electrical brain stimulation may be useful to modify the psychostimulant addiction risk.
It is well known that most odorants stimulate the trigeminal system but the time course of the brain regions activated by these chemical stimulations remains poorly documented, especially regarding the trigeminal system. This functional magnetic resonance imaging (fMRI) study compares brain activations resulting from the contrast between two odorant conditions (one bimodal odor and one relatively pure olfactory stimulant) according to the duration of the stimulation (i.e. one inhalation, or three or six successive inhalations). The results show striking differences in the main brain regions activated according to these durations. The caudate nucleus and the orbitofrontal cortex are only involved in short-duration stimulations, and the posterior insular cortex and post-central gyrus (SI) are only activated by long duration stimulations. Different regions of the frontal, temporal and occipital lobe are activated depending on the duration but mainly during medium-duration stimulations. These results expand on the findings of previous studies and contribute to the description of temporal networks in trigeminal perception.
Non-invasive neuromodulatory techniques, including transcranial direct current stimulation (tDCS), have been shown to modulate neuronal function and are used both in cognitive neuroscience and to treat neuropsychiatric conditions. In this context, animal models provide a powerful tool to identify the neurobiological mechanisms of action of tDCS. However, finding a current generator that is easily usable and which allows a wide range of stimulation parameters can be difficult and/or expensive. Here, we introduce the Open-tES device, a project under a Creative Commons License (CC BY, SA 4.0) shared on the collaborative platform Git-Hub. This current generator allows tDCS (and other kinds of stimulations) to be realized, is suitable for rodents, is easy to use, and is low-cost. Characterization has been performed to measure the precision and accuracy of the current delivered. We also aimed to compare its effects with a commercial stimulator used in clinical trials (DC-Stimulator Plus, NeuroConn, Germany). To achieve this, a behavioral study was conducted to evaluate its efficacy for decreasing depression related-behavior in mice. The stimulator precision and accuracy were better than 250 nA and 25 nA, respectively. The behavioral evaluation performed in mice in the present study did not reveal any significant differences between the commercial stimulator used in clinical trials and the Open-tES device. Accuracy and precision of the stimulator ensure high repeatability of the stimulations. This current generator constitutes a reliable and inexpensive tool that is useful for preclinical studies in the field of non-invasive electrical brain stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.