The flux reconstruction (FR) approach allows various well-known high-order schemes, such as collocation based nodal discontinuous Galerkin (DG) methods and spectral difference (SD) methods, to be cast within a single unifying framework. Recently, the authors identified a new class of FR schemes for 1D conservation laws, which are simple to implement, efficient and guaranteed to be linearly stable for all orders of accuracy. The new schemes can easily be extended to quadrilateral elements via the construction of tensor product bases. However, for triangular elements, such a construction is not possible. Since numerical simulations over complicated geometries often require the computational domain to be tessellated with simplex elements, the development of stable FR schemes on simplex elements is highly desirable. In this article, a new class of energy stable FR schemes for triangular elements is developed. The schemes are parameterized by a single scalar quantity, which can be adjusted to provide an infinite range of linearly stable high-order methods on triangular elements. Von Neumann stability analysis is conducted on the new class of schemes, which allows identification of schemes with increased explicit time-step limits compared to the collocation based nodal DG method. Numerical experiments are performed to confirm that the new schemes yield the optimal order of accuracy for linear advection on triangular grids.
The flux reconstruction (FR) approach unifies various high-order schemes, including collocation based nodal discontinuous Galerkin (DG) methods, and all spectral difference methods (at least for a linear flux function), within a single framework. Recently a new range of linearly stable FR schemes have been identified, henceforth referred to as Vincent-Castonguay-Jameson-Huynh (VCJH) schemes. In this short note non-linear stability properties of FR schemes are elucidated via analysis of linearly stable VCJH schemes (so as to focus attention solely on issues of non-linear stability). It is shown that linearly stable VCJH schemes (at least in their standard form) may be unstable if the flux function is non-linear. This instability is due to aliasing errors, which manifest since FR schemes (in their standard form) utilize a collocation projection at the solution points to construct a polynomial approximation of the flux. Strategies for minimizing such aliasing driven instabilities are discussed within the context of the FR approach. In particular, it is shown that the location of the solution points will have a significant effect on non-linear stability. This result is important, since linear analysis of FR schemes implies stability is independent of solution point location. Finally, it is shown that if an exact L2 projection is employed to construct an approximation of the flux (as opposed to a collocation projection), then aliasing errors and hence aliasing driven instabilities will be eliminated. However, performing such a projection exactly, or at least very accurately, would be more costly than performing a collocation projection, and would certainly impact the inherent efficiency and simplicity of the FR approach. It can be noted that in all above regards, non-linear stability properties of FR schemes are similar to those of nodal DG schemes. The findings should motivate further research into the non-linear performance of FR schemes, which have hitherto been developed and analyzed solely in the context of a linear flux function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.