A small library of novel fluorinated N-benzamide enaminones were synthesized and evaluated in a battery of acute preclinical seizure models. Three compounds (GSA 62, TTA 35, and WWB 67) were found to have good anticonvulsant activity in the 6-Hz ‘psychomotor’ 44-mA rodent model. The focus of this study was to elucidate the active analogs’ mode of action on seizure-related molecular targets. Electrophysiology studies were employed to evaluate the compounds’ ability to inhibit neuronal activity in central olfactory neurons, mitral cells, and sensory-like ND7/23 cells, which express an assortment of voltage and ligand-gated ion channels. We did not find any significant effects of the three compounds on action potential generation in mitral cells. The treatment of ND7/23 cells with 50 µM of GSA 62, TTA 35, and WWB 67 generated a significant reduction in the amplitude of whole-cell sodium currents. Similar treatment of ND7/23 cells with these compounds had no effect on T-type calcium currents, indicating that fluorinated N-benzamide enaminone analogs may have a selective effect on voltage-gated sodium channels, but not calcium channels.
In an ongoing effort to identify novel drugs that can be used as neurotherapeutic compounds, we have focused on anilino enaminones as potential anticonvulsant agents. Enaminones are organic compounds containing a conjugated system of an amine, an alkene and a ketone. Here, we review the effects of a small library of anilino enaminones on neuronal activity. Our experimental approach employs an olfactory bulb brain slice preparation using whole-cell patch-clamp recording from mitral cells in the main olfactory bulb. The main olfactory bulb is a key integrative center in the olfactory pathway. Mitral cells are the principal output neurons of the main olfactory bulb, receiving olfactory receptor neuron input at their dendrites within glomeruli, and projecting glutamatergic axons through the lateral olfactory tract to the olfactory cortex. The compounds tested are known to be effective in attenuating pentylenetetrazol (PTZ) induced convulsions in rodent models. One compound in particular, KRS-5Me-4-OCF3, evokes potent inhibition of mitral cell activity. Experiments aimed at understanding the cellular mechanism underlying the inhibitory effect revealed that KRS-5Me-4-OCF3 shifts the concentration-response curve for GABA to the left. KRS-5Me-4-OCF3 enhances GABA affinity and acts as a positive allosteric modulator of GABAA receptors. Application of a benzodiazepine site antagonist blocks the effect of KRS-5Me-4-OCF3 indicating that KRS-5Me-4-OCF3 binds at the classical benzodiazepine site to exert its pharmacological action. This anilino enaminone KRS-5Me-4-OCF3 emerges as a candidate for clinical use as an anticonvulsant agent in the battle against epileptic seizures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.