This article presents a physically motivated approach, which has been developed in order to describe the transition of behavior between dense metal plasticity and microporous metal plasticity in the context of dynamic plasticity and adiabatic conditions. Considering that void germination requires a certain amount of plastic deformation, a 'primary' hole nucleation criterion as well as a statistical law governing the 'secondary' hole formation kinetics has been proposed. In a consistent way, the hole nucleation criterion accounts for the accelerating effects of stress triaxiality and the delaying effects of temperature and strain rate. In addition, a modification of the GTN model was proposed, allowing for describing cavity growth under shear loading. The 3D constitutive equations were implemented as user material in the engineering finite element computation code Abaqus Õ . Numerical simulations were conducted considering a single finite element under uniaxial tensile loading and simple shear then notched cylindrical samples under remote uniaxial tensile loading. The numerical results clearly show the influence of the hole nucleation criteria on the ductile damage and failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.