International audienceThe process of the decrease of the surface area due to crystallite growth in ceria at 943 K is described by a kinetic model involving oxygen and cerium diffusion. The experimentally found variations in the rate of crystallite growth are reported as a function of the content ( 10% cat.) of dopants, which are the cations Ca2+, Mg2+, Al3+, Y3+, Sc3+, Al3+, Th4+, Zr4+ and Si4+. The variations are discussed on the basis of the diffusion of cerium vacancies as the rate-limiting step, and on the basis of calculated expressions of the concentrations of oxygen vacancies, electrons and cerium vacancies vs. the oxygen partial pressure and the dopant content. For cations that are smaller than Ce4+, the comparison between the experimental and theoretical rates asserts the validity of the model and allows the prediction of the efficiency of a cation to stabilize the surface area, from its associations with oxygen vacancies and with the electron-bearing species, Ce′Ce
Static atomistic simulation techniques have been
employed to identify the low-energy configurations for
copper
ions within the Cu-ZSM-5 catalyst. We find that both isolated
copper and copper clusters form within the
zeolite channels, 80% of which are associated with framework aluminum
species. A particularly stable and
common species comprises two copper ions bridged with extra-framework
OH species, which we propose
may be a useful model for the active site in Cu-ZSM-5
catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.