A 12-month active biomonitoring study was performed in 2008-2009 on the Vesle river basin (Champagne-Ardenne, France) using the freshwater mussel Dreissena polymorpha as a sentinel species; allochthonous mussels originating from a reference site (Commercy) were exposed at four sites (Bouy, Sept-Saulx, Fismes, Ardre) within the Vesle river basin. Selected core biomarkers (acetylcholinesterase (AChE) activity, glutathione-S transferase (GST) activity, metallothionein concentration), along with digestive enzyme activities (amylase, endocellulase) and energy reserve concentrations (glycogen, lipids), were monitored throughout the study in exposed mussels. At the Fismes and Ardre sites (downstream basin), metallic and organic contamination levels were low but still high enough to elicit AChE and GST activity induction in exposed mussels (chemical stress); besides, chemical pollutants had no apparent deleterious effects on mussel condition. At the Bouy and Sept-Saulx sites (upstream basin), mussels obviously suffered from adverse food conditions which seriously impaired individual physiological state and survival (nutritional stress); food scarcity had however no apparent effects on core biomarker responses. Digestive enzyme activities responded to both chemical and nutritional stresses, the increase in energy outputs (general adaptation syndrome-downstream sites) or the decrease in energy inputs (food scarcity-upstream sites) leading to mid- or long-term induction of digestive carbohydrase activities in exposed mussels (energy optimizing strategy). Complex regulation patterns of these activities require nevertheless the use of a multi-marker approach to allow data interpretation. Besides, their sensitivity to natural confounding environmental factors remains to be precised.
The toxicity of dietary exposure to artificially aged TiO₂ nanomaterial (T-Lite) used in sunscreen cream was studied on Danio rerio. Embryolarval assays were conducted to assess the effects of TiO₂ residues of nanomaterial (RNM) on fish early life stages. Juvenile fishes were exposed by the trophic route in two experiments. During the first experiment, juvenile fishes were exposed to TiO₂ RNM for 14 days by adding RNM to commercial fish food. The second one consisted in producing a trophic food chain. Pseudokirchneriella subcapitata algae, previously contaminated with TiO₂ RNM in growth medium, was used to feed Daphnia magna neonates over a 48-h period. Daphnia were used next to feed juvenile fishes for 7 days. Accumulation of Ti, life traits (survival and growth) and biochemical parameters such as energy reserves, digestive (trypsin, esterase, cellulose and amylase) and antioxidant (superoxide dismutase and catalase) enzyme activity were measured at the end of exposures. As expected in the receiving aquatic system, TiO2 RNM at low concentrations caused a low impact on juvenile zebrafish. A slight impact on the early life stage of zebrafish with premature hatching was observed, and this effect appeared mainly indirect, due to possible embryo hypoxia. When juvenile fish are exposed to contaminated food, digestive enzyme activity indicated a negative effect of TiO₂ RNM. Digestive physiology was altered after 14 days of exposure and seemed to be an indirect target of TiO₂ RNM when provided by food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.