Based on previously published hydroponic plant, planktonic bacterial, and soil microbial community research, manufactured nanomaterial (MNM) environmental buildup could profoundly alter soil-based food crop quality and yield. However, thus far, no single study has at once examined the full implications, as no studies have involved growing plants to full maturity in MNM-contaminated field soil. We have done so for soybean, a major global commodity crop, using farm soil amended with two high-production metal oxide MNMs (nano-CeO 2 and -ZnO). The results provide a clear, but unfortunate, view of what could arise over the long term: (i) for nano-ZnO, component metal was taken up and distributed throughout edible plant tissues; (ii) for nano-CeO 2 , plant growth and yield diminished, but also (iii) nitrogen fixation-a major ecosystem service of leguminous crops-was shut down at high nano-CeO 2 concentration. Juxtaposed against widespread land application of wastewater treatment biosolids to food crops, these findings forewarn of agriculturally associated human and environmental risks from the accelerating use of MNMs.nanoparticles | nanotechnology | agriculture
Silver nanoparticles (Ag NPs) are commonly added to various consumer products and materials to impair bacterial growth. Recent studies suggested that the primary mechanism of antibacterial action of silver nanoparticles is release of silver ion (Ag(+)) and that particle-specific activity of silver nanoparticles is negligible. Here, we used a genome-wide library of Escherichia coli consisting of ∼4000 single gene deletion mutants to elucidate which physiological pathways are involved in how E. coli responds to different Ag NPs. The nanoparticles studied herein varied in both size and surface charge. AgNO3 was used as a control for soluble silver ions. Within a series of differently sized citrate-coated Ag NPs, smaller size resulted in higher Ag ion dissolution and toxicity. Nanoparticles functionalized with cationic, branched polyethylene imine (BPEI) exhibited equal toxicity with AgNO3. When we used a genome-wide approach to investigate the pathways involved in the response of E. coli to different toxicants, we found that only one of the particles (Ag-cit10) exhibited a pattern of response that was statistically similar to that of silver ion. By contrast, the pathways involved in E. coli response to Ag-BPEI particles were more similar to those observed for another cationic nanoparticle that did not contain Ag. Overall, we found that the pathways involved in bacterial responses to Ag nanoparticles are highly dependent on physicochemical properties of the nanoparticles, particularly the surface characteristics. These results have important implications for the regulation and testing of silver nanoparticles.
Soil drying and rewetting represents a common physiological stress for the microbial communities residing in surface soils. A drying-rewetting cycle may induce lysis in a significant proportion of the microbial biomass and, for a number of reasons, may directly or indirectly influence microbial community composition. Few studies have explicitly examined the role of drying-rewetting frequency in shaping soil microbial community structure. In this experiment, we manipulated soil water stress in the laboratory by exposing two different soil types to 0, 1, 2, 4, 6, 9, or 15 drying-rewetting cycles over a 2-month period. The two soils used for the experiment were both collected from the Sedgwick Ranch Natural Reserve in Santa Ynez, CA, one from an annual grassland, the other from underneath an oak canopy. The average soil moisture content over the course of the incubation was the same for all samples, compensating for the number of drying-rewetting cycles. At the end of the 2-month incubation we extracted DNA from soil samples and characterized the soil bacterial communities using the terminal restriction fragment length polymorphism (T-RFLP) method. We found that drying-rewetting regimes can influence bacterial community composition in oak but not in grass soils. The two soils have inherently different bacterial communities; only the bacteria residing in the oak soil, which are less frequently exposed to moisture stress in their natural environment, were significantly affected by drying-rewetting cycles. The community indices of taxonomic diversity and richness were relatively insensitive to drying-rewetting frequency. We hypothesize that drying-rewetting induced shifts in bacterial community composition may partly explain the changes in C mineralization rates that are commonly observed following exposure to numerous drying-rewetting cycles. Microbial community composition may influence soil processes, particularly in soils exposed to a significant level of environmental stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.