The sterile insect technique (SIT) has been proposed as an area-wide method to control the South American fruit fly, Anastrepha fraterculus (Wiedemann). This technique requires sterilization, a procedure that affects, along with other factors, the ability of males to modulate female sexual receptivity after copulation. Numerous pre-release treatments have been proposed to counteract the detrimental effects of irradiation, rearing and handling and increase SIT effectiveness. These include treating newly emerged males with a juvenile hormone mimic (methoprene) or supplying protein to the male's diet to accelerate sexual maturation prior to release. Here, we examine how male irradiation, methoprene treatment and protein intake affect remating behavior and the amount of sperm stored in inseminated females. In field cage experiments, we found that irradiated laboratory males were equally able to modulate female remating behavior as fertile wild males. However, females mated with 6-day-old, methoprene-treated males remated more and sooner than females mated with naturally matured males, either sterile or wild. Protein intake by males was not sufficient to overcome reduced ability of methoprene-treated males to induce refractory periods in females as lengthy as those induced by wild and naturally matured males. The amount of sperm stored by females was not affected by male irradiation, methoprene treatment or protein intake. This finding revealed that factors in addition to sperm volume intervene in regulating female receptivity after copulation. Implications for SIT are discussed.
Achyrocline satureioides is a shrub native from South America. In popular medicine it is used in infusions such as digestive, carminative, antispasmodic, eupeptic and emmenagogue. However, its main use is as an ingredient in the liquor industry. Commercial exploitation is carried out through the collection of natural populations in an unsustainable way. The micropropagation of A. satureioides will allow its massive propagation and it will settle a base for its domestication. For this, a clone denominated as M1-5 was first propagated by cuttings. Subsequently, nodal segments obtained from young stems were disinfected by a standard method and cultured on MS medium. These shoots were used as a source of explants for subsequent assays. For its in vitro establishment MS medium and WPM were tested. Once the culture was established, the responses of the explants to increasing concentrations of 6-benzylaminopurine (BAP) (0.0; 0.5; 2.5 and 5.0 μM) with and without 0.05 μM α-naphthalene acetic acid (NAA) on WPM as basal medium were studied during 35 days. The proliferation of buds, the presence of callus and the number and length of the roots were evaluated. All of the “macela” cuttings in vivo propagated rooted and developed satisfactorily under the conditions tested. The application of 5.0 μM BAP alone generated the best multiplication rate, so it was selected as the multiplication medium. De novo shoots rooted spontaneously and finally, transferred to the greenhouse. Here in it was possible to establish a micropropagation protocol not only for the production of plantlets of selected clones but also for the application of biotechnological tools in the development of A. satureioides germplasm.
Hedeoma multifloraBenth. (Lamiaceae) is an aromatic-medicinal species native to Argentina, Uruguay and southern Brazil that is in a state of vulnerability due to overexploitation. It is used in the preparation of flavored yerba mate and in popular medicine, mainly in abdominal conditions. The objective of this work was to adjust the micropropagation technique, study the field behavior of vitroplants, compare the seeds generated and close their cultivation cycle. Different concentrations of growth regulators were evaluated on Murashige-Skoog medium. The implantation was successful. There are no differences between the evaluated plants. It was possible to efficiently close the complete cycle in vitro, with 100% survival, flowering and production of viable seeds. This methodology will serve for its introduction to the field, subsequent domestication, reintroduction into its natural environment and mitigate the process of degradation of the populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.