There is a strong need for science-based risk assessment that utilizes known data from diverse sources to arrive at accurate assessments of human health risk. Such assessments will protect the public health without mandating unreasonable regulation. This paper utilizes 30 years of research on three "known human carcinogens": formaldehyde, vinyl chloride (VC), and ethylene oxide (EO), each of which forms DNA adducts identical to endogenous DNA adducts in all individuals. It outlines quantitative data on endogenous adducts, mutagenicity, and relationships between endogenous and exogenous adducts. Formaldehyde has the richest data set, with quantitative data on endogenous and exogenous DNA adducts from the same samples. The review elaborates on how such data can be used to inform the current risk assessment on formaldehyde, including both the biological plausibility and accuracy of projected risks. Finally, it extends the thought process to VC, EO, and additional areas of potential research, pointing out needs, nuances, and potential paths forward to improved understanding that will lead to strong science-based risk assessment.
3,4-Epoxy-1-butene (EB) is the major mutagenic metabolite of butadiene (BD), an important industrial chemical classified as a probable human carcinogen. Although the mechanism of carcinogenicity of EB is not known, its reactions with nucleophilic sites of DNA giving pro-mutagenic lesions are likely to constitute the early crucial step in multistage carcinogenesis. This study was conducted to characterize the adducts formed from reactions of EB with the most nucleophilic DNA nucleobases, adenine (Ade) and guanine (Gua), as free nucleobases, 2'-deoxyribonucleosides and constituents of calf thymus DNA (CT DNA) in order to provide insight into the nature of DNA modification by EB. The adducts were isolated using HPLC separation coupled with diode array detection (DAD) and structurally characterized from their electronic, mass- and nuclear magnetic resonance spectra. Four EB-adenine products were identified as N-1-(2-hydroxy-3-buten-1-yl) adenine (EB-Ade I), N-1-(1-hydroxy-3-buten-2-yl) adenine (EB-Ade II), N-3-(2-hydroxy-3-buten-1-yl) adenine (EB-Ade III) and N-3-(1-hydroxy-3-buten-2-yl) adenine (EB-Ade IV). Two previously reported guanine adducts: N-7-(2-hydroxy-3-buten-1-yl) guanine (EB-Gua I) and N-7-(1-hydroxy-3-buten-2-yl) guanine (EB-Gua II) were also collected. The purified adducts were used as reference compounds to detect and quantitate the corresponding adduct species formed in calf thymus DNA incubated with EB. All six adducts were detected in treated DNA. The N-7 position of guanine was the most reactive in DNA followed by N-3 of adenine and N-1 of adenine. The formation of N-1 and N-3-adenine adducts (EB-Ade I, 1.2 +/- 0.36; EB-Ade II, 0.8 +/- 0.27; EB-Ade III, 2.7 +/- 0.38; EB-Ade IV, 5.9 +/- 0.68 nmol/micromol Ade) in CT DNA was approximately one-tenth that of EB-guanine adducts (50.7 +/- 2.37 and 47.9 +/- 3.6 nmol/micromol Gua, respectively). The N-1-EB-Ade adducts detected in this study are likely to be the precursors of previously reported N6-EB-adenine adducts (Koivisto et al., 1995) through Dimroth rearrangement. Since BD and EB induce significant numbers of point mutations at A:T base pairs, the EB-adenine adducts may represent important lesions involved in BD-induced mutagenesis and carcinogenesis.
1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol). The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for major species differences in carcinogenicity. We have conducted extensive exposure-biomarker studies on mice, rats and humans. Using low exposures that range from current occupational levels to human exposures from tobacco smoke has provided evidence that mice are very different from humans, with mice forming ~200 times more DEB than humans at exposures of 0.1–1.5 ppm BD. While no gender differences have been noted in mice and rats for globin adducts or N-7 guanine adducts, female rats and mice had 2–3-fold higher Hprt mutations and DNA-DNA cross-links, suggesting a gender difference in DNA repair. Numerous molecular epidemiology studies have evaluated globin adducts and Hprt mutations, SCEs and chromosomal abnormalities. None of the blinded studies have shown evidence of human genotoxicity at current occupational exposures and studies of globin adducts have shown similar or lower formation of adducts in females than males. If one calculates the EB dose-equivalents for the three species, mice clearly differ from rats and humans, being ~44 and 174 times greater than rats and humans, respectively. These data provide a scientific basis for improved risk assessment of BD.
The purposes of the present study were: (i) to investigate the potential use of several biomarkers as quantitative indicators of the in vivo conversion of ethylene (ET) to ethylene oxide (EO); (ii) to produce molecular dosimetry data that might improve assessment of human risk from exogenous ET exposures. Groups (n = 7/group) of male F344 rats and B6C3F1 mice were exposed by inhalation to 0 and 3000 p. p.m. ET for 1, 2 or 4 weeks (6 h/day, 5 days/week) or to 0, 40, 1000 and 3000 p.p.m. ET for 4 weeks. N:-(2-hydroxyethyl)valine (HEV), N:7-(2-hydroxyethyl) guanine (N7-HEG) and HPRT: mutant frequencies were assessed as potential biomarkers for determining the molecular dose of EO resulting from exogenous ET exposures of rats and mice, compared with background biomarker values. N7-HEG was quantified by gas chromatography coupled with high resolution mass spectrometry (GC-HRMS), HEV was determined by Edman degradation and GC-HRMS and HPRT: mutant frequencies were measured by the T cell cloning assay. N7-HEG accumulated in DNA with repeated exposure of rodents to 3000 p.p.m. ET, reaching steady-state concentrations around 1 week of exposure in most tissues evaluated (brain, liver, lung and spleen). The dose-response curves for N7-HEG and HEV were supralinear in exposed rats and mice, indicating that metabolic activation of ET was saturated at exposures >/=1000 p.p.m. ET. Exposures of mice and rats to 200 p.p.m. EO for 4 weeks (as positive treatment controls) led to significant increases in HPRT: mutant frequencies over background in splenic T cells from exposed rats and mice, however, no significant mutagenic response was observed in the HPRT: gene of ET-exposed animals. Comparisons between the biomarker data for both unexposed and ET-exposed animals, the dose-response curves for the same biomarkers in EO-exposed rats and mice and the results of the rodent carcinogenicity studies of ET and EO suggest that too little EO arises from exogenous ET exposure to produce a significant mutagenic response or a carcinogenic response under standard bioassay conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.