Quantum sensing is highly attractive for accessing spectral regions in which the detection of photons is technically challenging: sample information is gained in the spectral region of interest and transferred via biphoton correlations into another spectral range, for which highly sensitive detectors are available. This is especially beneficial for terahertz radiation, where no semiconductor detectors are available and coherent detection schemes or cryogenically cooled bolometers have to be employed. Here, we report on the first demonstration of quantum sensing in the terahertz frequency range in which the terahertz photons interact with a sample in free space and information about the sample thickness is obtained by the detection of visible photons. As a first demonstration, we show layer thickness measurements with terahertz photons based on biphoton interference. As non-destructive layer thickness measurements are of high industrial relevance, our experiments might be seen as a first step towards industrial quantum sensing applications.
We present a calculation of the η-η mixing in the framework of large-N c chiral perturbation theory. A general expression for the η-η mixing at next-to-next-to-leading order (NNLO) is derived, including higher-derivative terms up to fourth order in the four momentum, kinetic and mass terms. In addition, the axial-vector decay constants of the η-η system are determined at NNLO. The numerical analysis of the results is performed successively at LO, NLO, and NNLO. We investigate the influence of one-loop corrections, OZI-rule-violating parameters, and O(N c p 6 ) contact terms.
Imaging and microscopy are some of the most important tools in modern life science for getting new insights into metabolisms or unravelling bio‐chemical processes. However, in particular low‐light observations outside the visible spectrum are still challenging and a limiting factor. A rugged, label‐free quantum imaging system is presented capable of recording at video rate in the visible regime, while illuminating the sample with undetected light of different wavelength. The results pave the way for a field deployable quantum imaging device allowing live‐cell imaging in extreme spectral ranges with a minimal photo dose.
Many thermodynamic models used in practice are at least partially empirical and thus require the determination of certain parameters using experimental data. However, due to the complexity of the models involved as well as the inhomogeneity of available data, a straightforward application of basic methods often does not yield a satisfactory result. This work compares three different strategies for the numerical solution of parameter estimation problems, including errors both in the input and in the output variables. Additionally, the new idea to apply multi-criteria optimization techniques to parameter estimation problems is presented. Finally, strategies for the estimation and propagation of the model errors are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.