The main objective of this project was to develop a steel slag filter effluent neutralization process by acidification with CO-enriched air coming from a bioprocess. Sub-objectives were to evaluate the neutralization capacity of different configurations of neutralization units in lab-scale conditions and to propose a design model of steel slag effluent neutralization. Two lab-scale column neutralization units fed with two different types of influent were operated at hydraulic retention time of 10 h. Tested variables were mode of flow (saturated or percolating), type of media (none, gravel, Bionest and AnoxKaldnes K3), type of air (ambient or CO-enriched) and airflow rate. One neutralization field test (saturated and no media, 2000-5000 ppm CO, sequential feeding, hydraulic retention time of 7.8 h) was conducted for 7 days. Lab-scale and field-scale tests resulted in effluent pH of 7.5-9.5 when the aeration rate was sufficiently high. A model was implemented in the PHREEQC software and was based on the carbonate system, CO transfer and calcite precipitation; and was calibrated on ambient air lab tests. The model was validated with CO-enriched air lab and field tests, providing satisfactory validation results over a wide range of CO concentrations. The flow mode had a major impact on CO transfer and hydraulic efficiency, while the type of media had little influence. The flow mode also had a major impact on the calcite surface concentration in the reactor: it was constant in saturated mode and was increasing in percolating mode. Predictions could be made for different steel slag effluent pH and different operation conditions (hydraulic retention time, CO concentration, media and mode of flow). The pH of the steel slag filter effluent and the CO concentration of the enriched air were factors that influenced most the effluent pH of the neutralization process. An increased concentration in CO in the enriched air reduced calcite precipitation and clogging risks. Stoichiometric calculations showed that a typical domestic septic tank effluent with 300 mg/L of biodegradable COD provides enough biological CO for neutralization of a steel slag effluent with pH of 10.5-11.5. A saturated neutralization reactor with no media operated at hydraulic retention time of 10 h and a concentration of 2000 ppm in CO enriched air is recommended for full-scale applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.