In conclusion, these findings demonstrated that ANT is able to regulate ion pump activity and cholinergic neurotransmission, as well as being able to enhance memory and act as an anxiolytic compound in animals with SDAT.
., Morsch, V.M., Spanevello, R., Mazzanti, C.M.,Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats, International Journal of Developmental Neuroscience (2013), http://dx.doi.org/10. 1016/j.ijdevneu.2013.12.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. animals were SCO injected (1mg/kg; IP) and were performed the behavior 58 tests, and submitted to euthanasia. A memory deficit was found in SCO group, 59but ANT treatment prevented this impairment of memory (P<0.05). The ANT 60 treatment per se had an anxiolitic effect. AChE activity was increased in both in 61 cortex and hipoccampus of SCO group, this effect was significantly attenuated 62 by ANT (P<0.05). SCO decreased Na + ,K + -ATPase and Ca
2+-ATPase activities 63 in hippocampus, and ANT was able to significantly (P<0.05) prevent these 64 effects. No significant alteration was found on NOx levels among the groups. In 65 conclusion, the ANT is able to regulate cholinergic neurotransmission and 66 restore the Na + ,K + -ATPase and Ca 2+ -ATPase activities, and also prevented 67 memory deficits caused by scopolamine administration. 68 69 70
Our results show that scopolamine may affect purinergic enzymatic cascade or cause alterations in energy metabolism inducing loss of memory. In contrast Antho could reverse these changes, suggesting a neuroprotective effect of Antho on ectonucleotidase activities and neuronal energetic metabolism.
Spermidine is an endogenous polyamine with a polycationic structure present in the central nervous system of mammals. Spermidine regulates biological processes, such as Ca(2+) influx by glutamatergic N-methyl-d-aspartate receptor (NMDA receptor), which has been associated with nitric oxide synthase (NOS) and cGMP/PKG pathway activation and a decrease of Na(+),K(+)-ATPase activity in rats' cerebral cortex synaptosomes. Na(+),K(+)-ATPase establishes Na(+) and K(+) gradients across membranes of excitable cells and by this means maintains membrane potential and controls intracellular pH and volume. However, it has not been defined whether spermidine modulates Na(+),K(+)-ATPase activity in the hippocampus. In this study we investigated whether spermidine alters Na(+),K(+)-ATPase activity in slices of hippocampus from rats, and possible underlying mechanisms. Hippocampal slices and homogenates were incubated with spermidine (0.05-10 μM) for 30 min. Spermidine (0.5 and 1 μM) decreased Na(+),K(+)-ATPase activity in slices, but not in homogenates. MK-801 (100 and 10 μM), a non-competitive antagonist of NMDA receptor, arcaine (0.5μM), an antagonist of the polyamine binding site at the NMDA receptor, and L-NAME (100μM), a NOS inhibitor, prevented the inhibitory effect of spermidine (0.5 μM). ODQ (10 μM), a guanylate cyclase inhibitor, and KT5823 (2 μM), a protein kinase G inhibitor, also prevented the inhibitory effect of spermidine on Na(+),K(+)-ATPase activity. Spermidine (0.5 and 1.0 μM) increased NO(2) plus NO(3) (NOx) levels in slices, and MK-801 (100 μM) and arcaine (0.5 μM) prevented the effect of spermidine (0.5 μM) on the NOx content. These results suggest that spermidine-induced decrease of Na(+),K(+)-ATPase activity involves NMDA receptor/NOS/cGMP/PKG pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.