In the present study, the bacteriocins produced by Staphylococcus aureus 4185, a strain isolated from bovine mastitis, were purified and partially characterized. After purification by ammonium sulfate precipitation, cation-exchange chromatography, and five runs of high-performance liquid chromatography (HPLC), antimicrobial activity was recovered with 40% and 80% isopropanol, suggesting that more than one antimicrobial peptide, named aureocins 4185, is produced by S. aureus 4185. Mass spectrometry analyses revealed three peptides eluted with 40% isopropanol: peptide A (2,305.3 +/-1.5 Da), peptide B (2,327.3 +/-1.5 Da), and peptide C (3,005.5 +/-1.5 Da), and two peptides eluted with 80% isopropanol: peptide D (6,413.5 +/-1.5 Da) and peptide E (12,834.5 +/-1.5 Da). Although five peptides have been detected, only four small peptide sequences were obtained by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)/TOF mass spectrometry analyses: SLLEQFTGK (eluted with 40% isopropanol), ALLYDER, NNTSHNLPLGWFNVK, and NNLAQGTFNATK (eluted with 80% isopropanol). The sequences SLLEQFTGK and ALLYDER revealed identity with hypothetical peptides with unknown function. The sequences NNTSHNLPLGWFNVK and NNLAQGTFNATK showed similarity to a segment of a precursor of staphylococcal autolysins. The antimicrobial activity detected in the supernatant of strain 4185 proved to be resistant to heat treatment at 65°C; however, treatment at 80°C abolished completely its antimicrobial properties. The concentrated supernatant containing aureocins 4185 exhibited a strong bacteriolytic activity toward Micrococcus luteus ATCC 4698. Additionally, aureocins 4185 exhibited antagonistic activity against important foodborne pathogens, including Listeria monocytogenes, thus showing a potential application in food preservation.