Este artigo faz análises gráfica e analítica, tanto sobre a chamada Reta de Euler, quanto de relações proporcionais destes três Pontos Notáveis, em triângulos, no Espaço Bidimensional (X, Y), ou seja, Espaço R2. A análise gráfica, foi feita por desenhos executados com o programa AUTOCAD©, versão 2015. Este artigo analisa as seguintes conclusões de Euler e outros renomados matemáticos, aplicadas aos triângulos: 1) Existe uma Reta que passa pelos seguintes Pontos Notáveis de triângulos escalenos e isósceles: Ortocentro (O), Baricentro (G) e Circuncentro (C). Esta é a chamada Reta de Euler, que não se aplica a triângulos equiláteros. 2) Na Reta de Euler, o Baricentro (G) está localizado entre o Ortocentro (O) e o Circuncentro (C). 3) A distância entre o Baricentro (G) e o Ortocentro (O) é o dobro da distância entre o Baricentro (G) e o Circuncentro (C). 4) Existe uma Circunferência com centro no encontro das Mediatrizes (o Circuncentro) e que passa pelos três vértices de um triângulo. Este artigo tem como objetivo ajudar a um melhor desenvolvimento das habilidades lógico-matemática e viso-espacial, tanto de estudantes da Licenciatura, quanto de professores de Matemática.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.