This work proposes a deep neural net (DNN) that accomplishes the reliable visual recognition of a chosen object captured with a webcam and moving in a 3D space. Autoencoding and substitutional reality are used to train a shallow net until it achieves zero tracking error in a discrete ambient. This trained individual is set to work in a real world closed loop system where images coming from a webcam produce displacement information for a moving region of interest (ROI) inside the own image. This loop gives rise to an emergent tracking behavior which creates a self-maintain flow of compressed space-time data. Next, short term memory elements are set to play a key role by creating new representations in terms of a space-time matrix. The obtained representations are delivery as input to a second shallow network which acts as "recognizer". A noise balanced learning method is used to fast train the recognizer with real-world images, giving rise to a simple and yet powerful robotic eye, with a slender neural processor that vigorously tracks and recognizes the chosen object. The system has been tested with real images in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.