The in vitro motility assay is valuable for fundamental studies of actomyosin function and has recently been combined with nanostructuring techniques for the development of nanotechnological applications. However, the limited understanding of the interaction mechanisms between myosin motor fragments (heavy meromyosin, HMM) and artificial surfaces hampers the development as well as the interpretation of fundamental studies. Here we elucidate the HMM−surface interaction mechanisms for a range of negatively charged surfaces (silanized glass and SiO2), which is relevant both to nanotechnology and fundamental studies. The results show that the HMM-propelled actin filament sliding speed (after a single injection of HMM, 120 μg/mL) increased with the contact angle of the surfaces (in the range of 20−80°). However, quartz crystal microbalance (QCM) studies suggested a reduction in the adsorption of HMM (with coupled water) under these conditions. This result and actin filament binding data, together with previous measurements of the HMM density (Sundberg, M.; Balaz, M.; Bunk, R.; Rosengren-Holmberg, J. P.; Montelius, L.; Nicholls, I. A.; Omling, P.; Tågerud, S.; Månsson, A. Langmuir 2006, 22, 7302−7312. Balaz, M.; Sundberg, M.; Persson, M.; Kvassman, J.; Månsson, A. Biochemistry 2007, 46, 7233−7251), are consistent with (1) an HMM monolayer and (2) different HMM configurations at different contact angles of the surface. More specifically, the QCM and in vitro motility assay data are consistent with a model where the molecules are adsorbed either via their flexible C-terminal tail part (HMMC) or via their positively charged N-terminal motor domain (HMMN) without other surface contact points. Measurements of ζ potentials suggest that an increased contact angle is correlated with a reduced negative charge of the surfaces. As a consequence, the HMMC configuration would be the dominant configuration at high contact angles but would be supplemented with electrostatically adsorbed HMM molecules (HMMN configuration) at low contact angles. This would explain the higher initial HMM adsorption (from probability arguments) under the latter conditions. Furthermore, because the HMMN mode would have no actin binding it would also account for the lower sliding velocity at low contact angles. The results are compared to previous studies of the microtubule−kinesin system and are also discussed in relation to fundamental studies of actomyosin and nanotechnological developments and applications.
We previously showed that neonatal leptin treatment programmes higher body weight and food intake in adult rats. Here we investigate whether leptin treatment during lactation affects the anorectic effect of leptin on adult rats and their hypothalamic leptin receptors (OB-Rb) and whether those changes could have consequences on intermediary metabolism. When the offspring were born, pups were divided into two groups: the Lep group, injected daily with leptin (8 mg/100 g body weight, subcutaneously) for the first 10 d of lactation, and the control group, injected daily with saline. After weaning (day 21), body weight and food intake were monitored until the rats were 150 d old. Food intake was higher in the Lep group (approximately 14 %, P, 0·05) from day 133 onwards, and body weight was higher (approximately 10 %, P, 0·05) from day 69 onwards, compared with the control group. At 150 d of age, the rats were tested for food intake in response to either leptin (0·5 mg/kg body weight intraperitoneally; groups CL and LepL) or saline (groups CSal and LepSal). The CL group showed a decrease in food intake, but no response was observed in the LepL group, suggesting leptin resistance. The Lep group demonstrated a decrease in OB-Rb expression (240 %, P,0·05), hyperleptinaemia (þ78 %, P,0·05), hyperinsulinaemia (þ 100 %, P, 0·02), hypertriacylglycerolaemia (þ 17 %, P, 0·05) and a higher protein content in the body (þ16 %, P, 0·05) without changes in fat mass and glycaemia. We conclude that neonatal leptin treatment programmes both hyperleptinaemia and hyperinsulinaemia in adulthood, which leads to leptin resistance by reducing the expression of the hypothalamic leptin receptor.
Key points• Perinatal maternal high-fat diet changes milk composition, resulting in obesity and hyperglycaemia in male offspring at weaning.• Offspring obesity is associated with hyperleptinaemia and changes in the central leptin signalling pathway in the hypothalamic arcuate nucleus.• Maternal high-fat diet increased adrenal catecholamines in offspring but reduced liver and adipose tissue adrenoreceptors, thereby contributing to increased adiposity in these animals.• Early obesity and hyperleptinaemia in offspring may have a stimulatory effect on the hypothalamus-pituitary-thyroid axis as an adaptive response to the positive energy balance.• Both catecholamines and thyroid hormones may impact cardiovascular function, thereby contributing to the development of hypertension.Abstract Maternal nutritional status affects the future development of offspring. Both undernutrition and overnutrition in critical periods of life (gestation or lactation) may cause several hormonal changes in the pups and programme obesity in the adult offspring. We have shown that hyperleptinaemia during lactation results in central leptin resistance, higher adrenal catecholamine secretion, hyperthyroidism, and higher blood pressure and heart rate in the adult rats. Here, we evaluated the effect of a maternal isocaloric high-fat diet on breast milk composition and its impact on leptinaemia, energy metabolism, and adrenal and thyroid function of the offspring at weaning. We hypothesised that the altered source of fat in the maternal diet even under normal calorie intake would disturb the metabolism of the offspring. Female Wistar rats were fed a normal (9% fat; C group) or high-fat diet (29% fat as lard; HF group) for 8 weeks before mating and during pregnancy and lactation. HF mothers presented increased total body fat content after 8 weeks (+27%, P < 0.05) and a similar fat content at the end of lactation. In consequence, the breast milk from the HF group had higher concentration of protein (+18%, P < 0.05), cholesterol (+52%, P < 0.05) and triglycerides (+86%, P < 0.05). At weaning, HF offspring had increased body weight (+53%, P < 0.05) and adiposity (2 fold, P < 0.05), which was associated with lower β3-adrenoreceptor content in adipose tissue (−40%, P < 0.05). The offspring also presented hyperglycaemia (+30%, P < 0.05) and hyperleptinaemia (+62%, P < 0.05). In the leptin signalling pathway in the hypothalamus, we found lower p-STAT3/STAT3 (−40%, P < 0.05) and SOCS3 (−55%, P < 0.05) content in the arcuate nucleus, suggesting leptin resistance. HF offspring also had higher adrenal catecholamine content (+17%, P < 0.05), liver glycogen content (+50%, P < 0.05) and hyperactivity of the thyroid axis at weaning. Our results suggest that a high fat diet increases maternal body fat and this additional energy is transferred to the offspring during lactation, since at weaning the dams had normal fat and the pups were obese.
Postnatal early overnutrition (EO) is a risk factor for obesity in adult life. Rats raised in a small litter can develop hyperinsulinaemia, hyperphagia, hyperleptinaemia and hypertension as adults. Since leptin regulates the hypothalamic-pituitary-thyroid axis and the metabolism of thyroid hormones, we studied the leptin signalling pathway in pituitary and thyroid glands of the postnatal EO model. To induce EO, at the third day of lactation the litter size was reduced to three pups per litter (SL group). In control litters (NL group), the litter size was adjusted to 10 pups per litter. Body weight and food intake were monitored. Rat offspring were killed at 21 (weaning) and 180 days old (adulthood). Plasma thyroid hormones, thyroid-stimulating hormone (TSH) and leptin were measured by radioimmunoassay. Proteins of the leptin signalling pathway were analysed by Western blotting. Body weight of offspring in the SL group was higher from the seventh day of lactation (+33%, P < 0.05) until 180 days old (+18%, P < 0.05). Offspring in the SL group showed higher visceral fat mass at 21 and 180 days old (+176 and +52%, respectively, P < 0.05), but plasma leptin was higher only at 21 days (+88%, P < 0.05). The SL offspring showed higher plasma TSH, 3,5,3 -triiodothronine (T 3 ) and thyroxine (T 4 ) at 21 days (+60, +91 and +68%, respectively, P < 0.05), while the opposite was observed at 180 days regarding thyroid hormones (T 3 , −10%; and T 4 , −30%, P < 0.05), with no difference in TSH levels. In hypothalamus, no change was observed in the leptin signalling pathway at 21 days. However, lower janus thyrosine kinase 2 (JAK2) and phosphorilated-signal transducer and activator of transcription-3 (p-STAT3) content were detected in adulthood. In pituitary, the SL group presented higher leptin receptors (Ob-R), JAK2 and p-STAT3 content at 21 days and lower JAK2 and STAT3 content at 180 days old. In contrast, in thyroid, the Ob-R expression was lower in young SL rats, while the adult SL group presented higher Ob-R and JAK2 content. We showed that postnatal EO induces short-and long-term effects upon the hypothalamic-pituitary-thyroid axis. These changes may help to explain future development of metabolic and endocrine dysfunctions, such as metabolic syndrome and hypothyroidism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.