1. In the isolated perfused liver from 48h-starved rats, glycogen synthesis was followed by sequential sampling of the two major lobes. 2. The fastest observed rates of glycogen deposition (0.68-0.82mumol of glucose/min per g fresh liver) were obtained in the left lateral lobe, when glucose in the medium was 25-30mm and when gluconeogenic substrates were present (pyruvate, glycerol and serine: each initially 5mm). In this situation there was no net disappearance of glucose from the perfusion medium, although (14)C from [U-(14)C]glucose was incorporated into glycogen. There was no requirement for added hormones. 3. In the absence of gluconeogenic precursors, glycogen synthesis from glucose (30mm) was 0-0.4mumol/min per g. 4. When livers were perfused with gluconeogenic precursors alone, no glycogen was deposited. The total amount of glucose formed was similar to the amount converted into glycogen when 30mm-glucose was also present. 5. The time-course, maximal rates and glucose dependence of hepatic glycogen deposition in the perfused liver resembled those found in vivo in 48h-starved rats, during infusion of glucose. 6. In the perfused liver, added insulin or sodium oleate did not significantly affect glycogen synthesis in optimum conditions. In suboptimum conditions (i.e. glucose less than 25mm, or with gluconeogenic precursors absent) insulin caused a moderate acceleration of glycogen deposition. 7. These results suggest that on re-feeding after starvation in the rat, hepatic glycogen deposition could be initially the result of continued gluconeogenesis, even after the ingestion of glucose. This conclusion is discussed, particularly in connexion with the role of hepatic glucokinase, and the involvement of the liver in the glucose intolerance of starvation.
1. Net glycogen accumulation was measured in sequentially removed samples during perfusion of the liver of starved streptozotocin-diabetic rats, and shown to be significantly impaired, compared with rates in normal (starved) rats. 2. In perfusions of normal livers with glucose plus C3 substrates, there was an increase in the proportion of glycogen synthetase 'a', compared with that in the absence of substrates. This response to substrates, followed in sequential synthesis and enzymic sensitivity in the perfused liver of diabetic rats were reversed by pretreatment in vivo with glucose plus fructose, or insulin. Glucose alone did not produce this effect. 4. Glucose, fructose, insulin or cortisol added to e perfusion medium (in the absence of pretreatment in vivo) did not stimulate glycogen synthesis in diabetic rats. 5. In intact diabetic rats, there was a decline in rates of net hepatic glycogen accumulation, and the response of glycogen synthetase to substrates. The most rapid rates of synthesis were obtained after fructose administration. 6. These results demonstrate that there is a marked inherent impairment in hepatic glycogen synthesis in starved diabetic rats, which can be rapidly reversed in vivo but no in perfusion. Thus hepatic glycogen synthesis does not appear to be sensitive to either the short-term direct action of insulin (added alone to perfusions) of to long-term insulin deprivation in vivo. The regulatory roles of substrates, insulin and glycogen synthetase in hepatic glycogen accumulation are discussed.
1. Vasopressin (anti-diuretic hormone, [8-arginine]vasopressin) stimulated the breakdown of glycogen in perfused livers of fed rats, at concentrations (50-600muunits/ml) that have been reported in the blood of intact rats, especially during acute haemorrhagic shock. 2. In perfused livers from starved rats, vasopressin (30-150muunits/ml) stimulated gluconeogenesis from a mixture of lactate, pyruvate and glycerol. 3. Vasopressin prevented accumulation of liver glycogen in the perfused liver of starved rats, or in starved intact rats. 4. The action of vasopressin on hepatic carbohydrate metabolism thus resembles that of glucagon; the minimum effective circulating concentrations of these hormones are of the same order (100pg/ml). 5. The stimulation of hepatic glucose output by vasopressin is discussed in connexion with the release of glucose and water from the liver.
1. The hormonal control of glycogen breakdown was studied in hepatocytes isolated from livers of fed rats. 2. Glucose release was stimulated by [8-arginine]vasopressin (10pm-10nm), oxytocin (1nm-1mum), and angiotensin II (1nm-0.1mum). These responses are all at least as sensitive to hormone as is glucose output in the perfused rat liver. 3. The effect of these three hormones on glucose release was critically dependent on extracellular Ca(2+), unlike that of glucagon. Half-maximal restoration of the vasopressin response occurred if 0.3mm-Ca(2+) was added back to the incubation medium. 4. Glycogen breakdown was more than sufficient to account for the glucose released into the medium, in the absence or presence of hormones. Lactate release by hepatocytes was not affected by vasopressin, but was inhibited by glucagon. 5. If Ca(2+) was omitted from the extracellular medium, vasopressin stimulated glycogenolysis, but not glucose release. 6. The phosphorylase a content of hepatocytes was increased by vasopressin, oxytocin and angiotensin II; minimum effective concentrations were 0.1pm, 0.1nm and 10pm respectively. This response was also dependent on Ca(2+). 7. These results demonstrate that hepatocytes can respond to low concentrations of vasopressin and angiotensin II, i.e. these effects are likely to be relevant in the intact animal. The role of extracellular Ca(2+) in the effects of these hormones on hepatic glycogenolysis and glucose release is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.