The aim of this study was to determine if Toxoplasma gondii are present in oysters (Crassostrea rhizophorae) and mussels (Mytella guyanensis) under natural conditions using a bioassay in mice and molecular detection methods. We first compared two standard protocols for DNA extraction, phenol-chloroform (PC) and guanidine-thiocyanate (GT), for both molluscs. A total of 300 oysters and 300 mussels were then acquired from the fish market in Santos city, São Paulo state, Brazil, between March and August of 2008 and divided into 60 groups of 5 oysters and 20 groups of 15 mussels. To isolate the parasite, five mice were orally inoculated with sieved tissue homogenates from each group of oysters or mussels. For molecular detection of T. gondii, DNA from mussels was extracted using the PC method and DNA from oysters was extracted using the GT method. A nested-PCR (Polymerase Chain Reaction) based on the amplification of a 155 bp fragment from the B1 gene of T. gondii was then performed. Eleven PCR-RFLP (Restriction Fragment Length Polymorphism) markers, SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, CS3 and Apico, were used to genotype positive samples. There was no isolation of the parasite by bioassay in mice. T. gondii was not detected in any of the groups of mussels by nested-PCR. DNA of T. gondii was apparently detected by nested-PCR in 2 groups of oysters (3.3%). Genotyping of these two positive samples was not successful. The results suggest that oysters of the species C. rhizophorae, the most common species from the coast of São Paulo, can filter and retain T. gondii oocysts from the marine environment. Ingestion of raw oysters as a potential transmission source of T. gondii to humans and marine mammals should be further investigated.
Neospora caninum is one of the most important causes of abortion in dairy cattle worldwide. The distribution of N. caninum in tissues of adult cattle is unknown and the parasite has not been demonstrated histologically in tissues of cows. In the present study the distribution of N. caninum in different tissues of adult cattle was evaluated by bioassays in dogs. Seventeen dogs (2-3 month-old) were fed different tissues of 4 naturally exposed adult cattle (indirect fluorescent antibody test N. caninum titer ≥ 400): 5 were fed with masseter; 5 with heart, 3 with liver, 4 with brain, and 3 pups were used as non-infected control. Two dogs fed masseter, 2 fed heart, 1 fed liver, and 3 fed brain shed oocysts, and all dogs presented no seroconvertion to N. caninum during the observation period of 4 weeks. The oocysts were confirmed as N. caninum based on the detection of N. caninum-specific DNA by PCR and sequencing. The results indicate that dogs can be infected by N. caninum with different tissues of infected cattle.
Toxoplasma gondii is a protozoan parasite that infects humans and other warm-blooded animals; it uses feral and domestic cats as the definitive hosts. Neospora caninum is a protozoan parasite of animals whose life cycle is very similar to T. gondii but uses canids as definitive hosts. Small rodents play an important role in the life cycle of T. gondii , and a few findings indicated that they may be natural intermediate hosts for N. caninum . The present study was aimed at identifying infections by T. gondii and N. caninum in urban rodents. Infections by T. gondii were quantified using isolation of the parasite by bioassay in mice; molecular methods were also used for both parasites. Overall, 217 rodents were captured. Brain and heart tissues of all rodents were bioassayed in mice for the detection of T. gondii infection. Brain and heart tissues of 121 rodents had the DNA extracted for molecular analysis. Toxoplasma gondii was isolated by bioassay from a single rodent. From the 121 rodents tested for the presence of T. gondii DNA, 2 animals were positive. In contrast, DNA of N. caninum was not detected in any of the samples. In conclusion, the surveys of N. caninum and T. gondii infection in Rattus rattus , Rattus norvegicus , and Mus musculus captured in urban areas of São Paulo reveal a striking low frequency of occurrence of these infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.