The osteoblast is the bone-forming cell. The molecular basis of osteoblast-specific gene expression and differentiation is unknown. We previously identified an osteoblast-specific cis-acting element, termed OSE2, in the Osteocalcin promoter. We have now cloned the cDNA encoding Osf2/Cbfa1, the protein that binds to OSE2. Osf2/Cbfa1 expression is initiated in the mesenchymal condensations of the developing skeleton, is strictly restricted to cells of the osteoblast lineage thereafter, and is regulated by BMP7 and vitamin D3. Osf2/Cbfa1 binds to and regulates the expression of multiple genes expressed in osteoblasts. Finally, forced expression of Osf2/Cbfa1 in nonosteoblastic cells induces the expression of the principal osteoblast-specific genes. This study identifies Osf2/Cbfa1 as an osteoblast-specific transcription factor and as a regulator of osteoblast differentiation.
The regulation of bone remodeling by an adipocyte-derived hormone implies that bone may exert a feedback control of energy homeostasis. To test this hypothesis we looked for genes expressed in osteoblasts, encoding signaling molecules and affecting energy metabolism. We show here that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and are protected from obesity and glucose intolerance because of an increase in beta-cell proliferation, insulin secretion, and insulin sensitivity. In contrast, mice lacking the osteoblast-secreted molecule osteocalcin display decreased beta-cell proliferation, glucose intolerance, and insulin resistance. Removing one Osteocalcin allele from OST-PTP-deficient mice corrects their metabolic phenotype. Ex vivo, osteocalcin can stimulate CyclinD1 and Insulin expression in beta-cells and Adiponectin, an insulin-sensitizing adipokine, in adipocytes; in vivo osteocalcin can improve glucose tolerance. By revealing that the skeleton exerts an endocrine regulation of sugar homeostasis this study expands the biological importance of this organ and our understanding of energy metabolism.
Gonadal failure induces bone loss while obesity prevents it. This raises the possibility that bone mass, body weight, and gonadal function are regulated by common pathways. To test this hypothesis, we studied leptin-deficient and leptin receptor-deficient mice that are obese and hypogonadic. Both mutant mice have an increased bone formation leading to high bone mass despite hypogonadism and hypercortisolism. This phenotype is dominant, independent of the presence of fat, and specific for the absence of leptin signaling. There is no leptin signaling in osteoblasts but intracerebroventricular infusion of leptin causes bone loss in leptin-deficient and wild-type mice. This study identifies leptin as a potent inhibitor of bone formation acting through the central nervous system and therefore describes the central nature of bone mass control and its disorders.
Calcification of the extracellular matrix (ECM) can be physiological or pathological. Physiological calcification occurs in bone when the soft ECM is converted into a rigid material capable of sustaining mechanical force; pathological calcification can occur in arteries and cartilage and other soft tissues. No molecular determinant regulating ECM calcification has yet been identified. A candidate molecule is matrix GLA protein (Mgp), a mineral-binding ECM protein synthesized by vascular smooth-muscle cells and chondrocytes, two cell types that produce an uncalcified ECM. Mice that lack Mgp develop to term but die within two months as a result of arterial calcification which leads to blood-vessel rupture. Chondrocytes that elaborate a typical cartilage matrix can be seen in the affected arteries. Mgp-deficient mice additionally exhibit inappropriate calcification of various cartilages, including the growth plate, which eventually leads to short stature, osteopenia and fractures. These results indicate that ECM calcification must be actively inhibited in soft tissues. To our knowledge, Mgp is the first inhibitor of calcification of arteries and cartilage to be characterized in vivo.
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.