ABI-007, an albumin-bound, 130-nm particle form of paclitaxel, was developed to avoid Cremophor/ethanol-associated toxicities in Cremophor-based paclitaxel (Taxol) and to exploit albumin receptor-mediated endothelial transport. We studied the antitumor activity, intratumoral paclitaxel accumulation, and endothelial transport for ABI-007 and Cremophor-based paclitaxel. Antitumor activity and mortality were assessed in nude mice bearing human tumor xenografts [lung (H522), breast (MX-1), ovarian (SK-OV-3), prostate (PC-3), and colon (HT29)] treated with ABI-007 or Cremophor-based paclitaxel. Intratumoral paclitaxel concentrations (MX-1-tumored mice) were compared for radiolabeled ABI-007 and Cremophor-based paclitaxel. In vitro endothelial transcytosis and Cremophor inhibition of paclitaxel binding to cells and albumin was compared for ABI-007 and Cremophor-based paclitaxel. Both ABI-007 and Cremophor-based paclitaxel caused tumor regression and prolonged survival; the order of sensitivity was lung > breast ffi ovary > prostate > colon. The LD 50 and maximum tolerated dose for ABI-007 and Cremophor-based paclitaxel were 47 and 30 mg/kg/d and 30 and 13.4 mg/kg/d, respectively. At equitoxic dose, the ABI-007-treated groups showed more complete regressions, longer time to recurrence, longer doubling time, and prolonged survival. At equal dose, tumor paclitaxel area under the curve was 33% higher for ABI-007 versus Cremophorbased paclitaxel, indicating more effective intratumoral accumulation of ABI-007. Endothelial binding and transcytosis of paclitaxel were markedly higher for ABI-007 versus Cremophorbased paclitaxel, and this difference was abrogated by a known inhibitor of endothelial gp60 receptor/caveolar transport. In addition, Cremophor was found to inhibit binding of paclitaxel to endothelial cells and albumin. Enhanced endothelial cell binding and transcytosis for ABI-007 and inhibition by Cremophor in Cremophor-based paclitaxel may account in part for the greater efficacy and intratumor delivery of ABI-007.Paclitaxel is a naturally occurring complex diterpenoid product extracted from the bark of the western yew, Taxus brevifolia (1). The unique mechanism of paclitaxel of stabilizing tubulin polymer and promoting microtubule assembly effectively inhibits mitosis, motility, and intracellular transport within cancerous cells and results in antineoplastic activity against a wide variety of malignancies (2 -4). Paclitaxel is widely used for the treatment of breast, lung, and advanced ovarian cancers (5).Because paclitaxel has very little aqueous solubility, Cremophor-based paclitaxel uses a Cremophor EL/ethanol vehicle. The amount of Cremophor EL necessary to deliver the requisite doses of paclitaxel is significantly higher than that given with any other marketed drug containing Cremophor EL, reaching plasma concentrations up to 0.4% and remaining >0.1% for 24 hours following a dose of 175 mg/m 2 (6). The Cremophor EL -containing paclitaxel formulation causes severe allergic, hypersensitivity, and anaph...
1 SQ109 is a novel [1,2]-diamine-based ethambutol (EMB) analog developed from high-throughput combinatorial screening. The present study aimed at characterizing its pharmacodynamics and pharmacokinetics. 2 The antimicrobial activity of SQ109 was confirmed in vitro (Mycobacterium tuberculosis-infected murine macrophages) and in vivo (M. tuberculosis-infected C57BL/6 mice) and compared to isoniazid (INH) and EMB. SQ109 showed potency and efficacy in inhibiting intracellular M. tuberculosis that was similar to INH, but superior to EMB. In vivo oral administration of SQ109 (0.1-25 mg kg À1 day À1 ) to the mice for 28 days resulted in dose-dependent reductions of mycobacterial load in both spleen and lung comparable to that of EMB administered at 100 mg kg À1 day À1 , but was less potent than INH at 25 mg kg À1 day À1 . Monitoring of SQ109 levels in mouse tissues on days 1, 14 and 28 following 28-day oral administration (10 mg kg À1 day À1 ) revealed that lungs and spleen contained the highest concentration of SQ109, at least 10 times above its MIC. 3 Pharmacokinetic profiles of SQ109 in mice following a single administration showed its C max as 1038 (intravenous (i.v.)) and 135 ng ml À1 (p.o.), with an oral T max of 0.31 h. The elimination t 1/2 of SQ109 was 3.5 (i.v.) and 5.2 h (p.o.). The oral bioavailability was 4%. However, SQ109 displayed a large volume of distribution into various tissues. The highest concentration of SQ109 was present in lung (4MIC), which was at least 120-fold (p.o.) and 180-fold (i.v.) higher than that in plasma. The next ranked tissues were spleen and kidney. SQ109 levels in most tissues after a single administration were significantly higher than that in blood. High tissue concentrations of SQ109 persisted for the observation period (10 h). 4 This study demonstrated that SQ109 displays promising in vitro and in vivo antitubercular activity with favorable targeted tissue distribution properties.
1 This study aimed at characterizing the interspecies absorption, distribution, metabolism and elimination (ADME) profile of N-geranyl-N 0 -(2-adamantyl)ethane-1,2-diamine (SQ109), a new diamine-based antitubercular drug. 2 Single doses of SQ109 were administered (intravenously (i.v.) and per os (p.o.)) to rodents and dogs and blood samples were analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). Based on i.v. equivalent body surface area dose, the terminal half-life (t 1/2 ) of SQ109 in dogs was longer than that in rodents, reflected by a larger volume of distribution (V ss ) and a higher clearance rate of SQ109 in dogs, compared to that in rodents. The oral bioavailability of SQ109 in dogs, rats and mice were 2.4-5, 12 and 3.8%, respectively. 3 After oral administration of [14 C]SQ109 to rats, the highest level of radioactivity was in the liver, followed by the lung, spleen and kidney. C]SQ109 (0.1-2.5 mg ml À1 ) to plasma proteins varied from 6 to 23% depending on the species (human, mouse, rat and dog). 4 SQ109 was metabolized by rat, mouse, dog and human liver microsomes, resulting in 22.8, 48.4, 50.8 or 58.3%, respectively, of SQ109 remaining after a 10-min incubation at 371C. The predominant metabolites in the human liver microsomes gave intense ion signals at 195, 347 and 363m/z, suggesting the oxidation, epoxidation and N-dealkylation of SQ109. P450 reaction phenotyping using recombinant cDNA-expressed human CYPs in conjunction with specific CYP inhibitors indicated that CYP2D6 and CYP2C19 were the predominant CYPs involved in SQ109 metabolism.
Perfluorooctanesulfonate (PFOS) has been found in biological samples in wildlife and humans. The geometric mean half-life of serum elimination of PFOS in humans has been estimated to be 4.8 years (95% CI, 4.0-5.8). A series of studies was undertaken to establish pharmacokinetic parameters for PFOS in rats, mice, and monkeys after single oral and/or IV administration of K(+)PFOS. Animals were followed for up to 23 weeks, and pharmacokinetic parameters were determined by WinNonlin® software. Rats and mice appeared to be more effective at eliminating PFOS than monkeys. The serum elimination half-lives in the rodent species were on the order of 1-2 months; whereas, in monkeys, the serum elimination half lives approximated 4 months. Collectively, these studies provide valuable insight for human health risk assessment regarding the potential for accumulation of body burden in humans on repeated exposure to PFOS and PFOS-generating materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.