SummaryBlood transfusion therapy is life-saving for patients with b-thalassaemia and sickle cell disease (SCD), but often results in severe iron overload. This pilot study examined whether the biomarkers of tissue injury or inflammation differ in these two diseases. Plasma malondialdehyde (MDA) was significantly increased 1AE8-fold in thalassaemia relative to control patients. In contrast, MDA in SCD was not significantly different from controls. In multivariate analysis, the strongest predictors of elevated MDA were liver iron concentration (P < 0AE001) and specific diagnosis (P ¼ 0AE019). A significant 2-fold elevation of non-transferrin bound iron (NTBI) was observed in thalassaemia relative to SCD. NTBI was not a significant predictor of high MDA in multivariate analysis. SCD patients showed a significant 2AE2-fold elevation of the inflammatory marker interleukin (IL)-6 relative to controls, and a 3AE6-and 1AE7-fold increase in IL-5 and IL-10 relative to thalassaemia. Although a-tocopherol was significantly decreased by at least 32% in both thalassaemia and SCD, indicating ongoing oxidant stress and antioxidant consumption, c-tocopherol, a nitric oxide-selective antioxidant, was increased 36% in SCD relative to thalassaemia. These results demonstrate that thalassaemia patients have increased MDA and circulating NTBI relative to SCD patients and lower levels of some cytokines and c-tocopherol. This supports the hypothesis that the biology of SCD may show increased inflammation and increased levels of protective antioxidants compared with thalassaemia.
Potentially damaging species (reactive oxygen, nitrogen and chlorine species) arise as by-products of metabolism and as physiological mediators and signalling molecules. Levels of these species are controlled by the antioxidant defence system. Several components of this system are micronutrients (e.g. vitamins C and E) or are dependent upon dietary micronutrients (e.g. CuZn and Mn superoxide dismutase). The antioxidant defences act as a coordinated system where deficiencies in one component may affect the efficiency of the others. Oxidative stress may be an important factor in infection if micronutrients are deficient.
A detailed evaluation of the antioxidant and pro-oxidant properties of lipoic acid (LA) and dihydrolipoic acid (DHLA) was performed. Both compounds are powerful scavengers of hypochlorous acid, able to protect alpha 1-antiproteinase against inactivation by HOCl. LA was a powerful scavenger of hydroxyl radicals (OH.) and could inhibit both iron-dependent OH. generation and peroxidation of ox-brain phospholipid liposomes in the presence of FeCl3-ascorbate, presumably by binding iron ions and rendering them redox-inactive. By contrast, DHLA accelerated iron-dependent OH. generation and lipid peroxidation, probably by reducing Fe3+ to Fe2+. LA inhibited this pro-oxidant action of DHLA. However, DHLA did not accelerate DNA degradation by a ferric bleomycin complex and slightly inhibited peroxidation of arachidonic acid by the myoglobin-H2O2 system. Under certain circumstances, DHLA accelerated the loss of activity of alpha-antiproteinase exposed to ionizing radiation under a N2O/O2 atmosphere and also the loss of creatine kinase activity in human plasma exposed to gas-phase cigarette smoke. Neither LA nor DHLA reacted with superoxide radical (O.2-) or H2O2 at significant rates, but both were good scavengers of trichloromethylperoxyl radical (CCl3O2.). We conclude that LA and DHLA have powerful antioxidant properties. However, DHLA can also exert pro-oxidant properties, both by its iron ion-reducing ability and probably by its ability to generate reactive sulphur-containing radicals that can damage certain proteins, such as alpha 1-antiproteinase and creatine kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.