Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies.
Tunnel Boring Machines play an important role in the underground infrastructure execution of modern cities. They weigh thousands of tons and measure hundreds of meters besides utilizing high powered energy in the excavation process. Although being well established, they are based on a last century design approach and they are not compatible anymore with the sustainable concept that characterizes current society. An alternative is looking for news technologies capable of replacing the traditional cutter disc in the excavation process. This is the approach of Tunnels Laboratory-LabTun-of Santa Catarina University. In this context, one of the lastest developments is a water jet tunnel boring machine (WJTBM). It utilizes a high power water jet (hydrodemolition) combined with diamond wire to execute the excavation process in a lighter, smart and less powerfull way. Therefore, it is just as important to compare the proposed new concept with the alternatives. This study deals with this necessity by analysing its technological performance. The advanced rate index was chosen for this task. It was calculated by the NTNU prediction model for traditional TBMs and by a proposed method for LabTun's concept. This method envolves experimental results of volumetric removal rate for high power water jet and geometrical characteristics of water jet TBM. The analysis utilized four types of rocks (sandstone, slate, meta-sandstone and granite) as geologic scenarium. The results show a better performance of WJTBM for soft and porous rock and an inexpressive performance for hard rock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.