Emerging evidence supports neurotensin as a trophic and antiapoptotic factor, mediating its control via the highaffinity neurotensin receptor (NT1 receptor) in several human solid tumors. In a series of 51 patients with invasive ductal breast cancers, 34% of all tumors were positive for neurotensin and 91% positive for NT1 receptor. We found a coexpression of neurotensin and NT1 receptor in a large proportion (30%) of ductal breast tumors, suggesting a contribution of the neurotensinergic signaling cascade within breast cancer progression. Functionally expressed NT1 receptor, in the highly malignant MDA-MB-231 human breast cancer cell line, coordinated a series of transforming functions, including cellular migration, invasion, induction of the matrix metalloproteinase (MMP)-9 transcripts, and MMP-9 gelatinase activity. Disruption of NT1 receptor signaling by silencing RNA or use of a specific NT1 receptor antagonist, SR48692, caused the reversion of these transforming functions and tumor growth of MDA-MB-231 cells xenografted in nude mice. Our findings support the contribution of neurotensin in human breast cancer progression and point out the utility to develop therapeutic molecules targeting neurotensin or NT1 receptor signaling cascade. These strategies would increase the range of therapeutic approaches and be beneficial for specific patients. (Cancer Res 2006; 66(12): 6243-9)
Significant aspects of COVID-19 pandemic remain obscure. Angiotensin converting enzyme 2 (ACE2), a component of the renin-angiotensin system, whose expression dominates on lung alveolar epithelial cells, is the human cell receptor of SARS-CoV-2, the causative agent of COVID-19. We strongly encourage the concept that thorough considerations of receptorligand interactions should be kept at the heart of scientific debate on infection. In this idea, the whole renin-angiotensin system has to be evaluated. We hypothesize that factors related to ethnicity, environment, behaviors, associated illness, and medications involving this complex system are probably responsible for situations regarded as anomalous from both an epidemiological and a clinical point of view, but, taken together, such factors may explain most of the aspects of current outbreak. We decided to use the analogy of a play and speculate about the possible impact in this tragedy of 1) air pollution via the interference of nitrogen dioxide on ACE2 expression; 2) the dual role of nicotine; 3) the hypothetical involvement of ACE2 polymorphisms, the relationships of which with ethnic factors and susceptibility to cardiovascular disease seems intriguing; 4) the impact on the severity of infection of hypertension and related medications acting on the renin/angiotensin system, and, finally, 5) the possible helpful role of chloroquine, thanks to its capacity of modifying ACE2 affinity to the viral spike protein by altering glycosylation. This hypothesis paper is an urgent call for the development of research programs that aim at questioning whether the putative protagonists of this tragedy are real-life actors in COVID-19. Highlights• Significant aspects of COVID-19 pandemic remain obscure • Angiotensin converting enzyme 2 (ACE2) is the human cell receptor of SARS-CoV-2• Receptor-ligand interactions, should be kept at the heart of scientific debate • Ethnicity, environment, and behaviors factors interfere with these interactions • Associated illness, and medications also interfere in a possibly dual manner
Cancer is a worldwide health problem. Personalized treatment represents a future advancement for cancer treatment, in part due to the development of targeted therapeutic drugs. These molecules are expected to be more effective than current treatments and less harmful to normal cells. The discovery and validation of new targets are the foundation and the source of these new therapies. The neurotensinergic system has been shown to enhance cancer progression in various cancers such as pancreatic, prostate, lung, breast, and colon cancer. It also triggers multiple oncogenic signaling pathways, such as the PKC/ERK and AKT pathways. In this review, we discuss the contribution of the neurotensinergic system to cancer progression, as well as the regulation and mechanisms of the system in order to highlight its potential as a therapeutic target, and its prospect for its use as a treatment in certain cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.